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Abstract

We propose a method for the classification
of matrices. We use a linear classifier with
a novel regularization scheme based on the
spectral �1-norm of its coefficient matrix.
The spectral regularization not only provides
a principled way of complexity control but
also enables automatic determination of the
rank of the coefficient matrix. Using the
Linear Matrix Inequality technique, we for-
mulate the inference task as a single con-
vex optimization problem. We apply our
method to the motor-imagery EEG classifica-
tion problem. The method not only improves
upon conventional methods in the classifica-
tion performance but also determines a sub-
space in the signal that concentrates discrim-
inative information without any additional
feature extraction step. The method can be
easily generalized to regression problems by
changing the loss function. Connections to
other methods are also discussed.

1. Introduction

In this paper, we consider the following linear regres-
sion model over matrices:

f(X;W, b) = Tr
[
W�X

]
+ b (1)

where X ∈ R
R×C is a R × C matrix input for which

we’d like to predict its label y; for example X may
be any multi-sensor recording of time series, image, or
any other vectorial data. We call W ∈ R

R×C a weight
matrix. The goal is to infer the weight matrix W and
the bias b ∈ R from the training examples {Xi, yi}n

i=1.
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The simplest approach would be to just ignore the fact
that the input X is a matrix and concatenate all e.g.,
columns into a long vector. Alternatively, one can de-
fine a problem specific inner product between matrices
and perform the inference in a Hilbert space. We take
a yet another approach; we choose a metric (or a norm)
for matrices which is used to (a) control the complex-
ity of the weight matrix when viewed from the primal
problem, and at the same time to (b) control the devi-
ation of the empirical statistics from their predictions
from a dual point of view. We use the norm dual-norm
pair, the spectral �1-norm and �∞-norm for the weight
matrix W and the input X, respectively.

Our framework is a maximum a posteriori (MAP) esti-
mation with a Laplacian prior on the singular values of
the weight matrix. The Laplacian prior enforces a low
rank solution. That is, if we rewrite Eq. (1) using the
singular value decomposition of W =

∑r
c=1 σcucv

�
c ,

the linear combination,

f(X;W, b) =
r∑

c=1

σcu
�
c Xvc + b,

consists of small number (r � R,C) of components.
Therefore the discriminative information is concen-
trated in a few projections of the input u�

c Xvc (c =
1, . . . , r).

In the next section, we formulate our approach as a
convex optimization problem using the Linear Matrix
Inequality (LMI) technique, and derive the dual prob-
lem for efficient optimization. In Sec. 3 we apply our
method to motor-imagery EEG classification problem.
The proposed method not only (a) shows improved
classification accuracy over conventional methods but
also (b) shows that a good classification is possible
with a small subspace in the data. In Sec. 4 related
methods with other regularization or loss functions are
discussed. We summarize the paper in the last section.
Some proofs and the details of the implementation are
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provided in the appendix.

2. Method

2.1. Logistic Regression Problem

Let us specialize the model (Eq. (1)) for a binary clas-
sification problem. We model the logit of the posterior
class probability with a linear function:

log
P (y = +1|X)
P (y = −1|X)

= Tr
[
W�X

]
+ b. (2)

We minimize the negative log-likelihood of Eq. (2) with
a spectral �1-norm penalization term, which is written
as follows:

(P) min
W∈RR×C ,b∈R,z∈Rn

n∑
i=1

�LR(zi) + λ ‖W‖1 ,

s.t. yi

(
Tr
[
W�Xi

]
+ b
)

= zi (3)
(i = 1, . . . , n),

where zi (i = 1, . . . , n) are called the latent variables,
λ is the regularization constant, and Tr [·] denotes the
trace. Here the logistic loss �LR and the spectral �1-
norm of a matrix ‖W‖1 are defined as follows:

�LR(z) := log (1 + exp(−z)) ,

‖W‖1 :=
r∑

c=1

σc [W ] ,

where σc [W ] (c = 1, . . . , r) is the c-th singular value
of a matrix W ∈ R

R×C and r is the rank of W .

Using two auxiliary positive semidefinite matrices
Q1 ∈ S

R
+ and Q2 ∈ S

C
+,1 we can rewrite the spec-

tral �1-norm, which is convex but a non-differentiable
function, with LMI, as follows:

(P′) min
W∈R

R×C ,

Q1∈S
R
+,Q2∈S

C
+,

b∈R,z∈R
n

n∑
i=1

�LR(zi) + λ (Tr [Q1] + Tr [Q2]) ,

(4)

s.t. yi

(
Tr
[
W�Xi

]
+ b
)

= zi

(i = 1, . . . , n), (5)[
Q1 − 1

2W
− 1

2W� Q2

]
� 0. (6)

Here the norm of the weight matrix W is replaced
by the trace of the matrices Q1 and Q2 that satisfy
the positive semidefinite constraint (Eq. (6)). One
can easily check that the minimum is attained at
Q1 = 1

2USU� and Q2 = 1
2V SV �, where W = USV �

1We denote by S
C the set of C ×C symmetric matrices

and by S
C
+ the set of C×C symmetric positive semidefinite

matrices.

is the singular value decomposition of W . Now we can
clearly see that the spectrally �1-regularized logistic
regression is a convex problem. In fact, the objective
function (Eq. (4)) is a convex function; the equality
constraints (Eq. (5)) are linear; the convexity of the
positive semidefinite constraint (Eq. (6)) follows from
the convexity of the set of positive semidefinite ma-
trices. Moreover, there exists a strictly feasible point
e.g., W = 0, b = 0 with strictly positive definite Q1 � 0
and Q2 � 0. Therefore the strong duality holds from
Slater’s theorem (Boyd & Vandenberghe, 2004).

2.2. Dual Problem

The Lagrange dual problem of the problem (P) is writ-
ten as follows (see appendix A for the derivation):

(D) min
α∈Rn

n∑
i=1

�∗LR (αi)

s.t. 0 ≤ αi ≤ 1 (i = 1, . . . , n),
n∑

i=1

αiyi = 0,

∥∥∥∥∥
n∑

i=1

αiyiXi

∥∥∥∥∥
∞

≤ λ,

where α = {αi}n
ı=1 ∈ R

n are the Lagrangian multipli-
ers associated with the equality constraints (Eq. (3)).

Here the dual loss �∗LR
2 and the spectral �∞-norm are

defined as follows:

�∗LR(α) := α log α + (1 − α) log (1 − α) ,

‖X‖∞ := max
1≤c≤r

σc [X] .

The dual problem (D) can also be rewritten with LMI
as follows:

(D′) min
α∈Rn

n∑
i=1

�∗LR (αi) ,

s.t. 0 ≤ αi ≤ 1 (i = 1, . . . , n),
n∑

i=1

αiyi = 0,

[
λIR

∑n
i=1 αiyiXi∑n

i=1 αiyiX
�
i λIC

]
� 0, (7)

where IR and IC denote identity matrices of size R and
C, respectively. Notice the conjugacy between the ma-
trix inequalities in the primal and the dual problems
(Eqs. (6) and (7), respectively).

2The dual loss �∗, which is defined as �∗(α) =
− infx (�(x) + αx) for convenience, is equivalent to the con-
vex conjugate or Legendre transformation �c except for the
negated domain, i.e., �∗(α) = �c(−α).
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2.3. Interior Point Method

Both the primal and dual problems ((P′) and (D′),
respectively) can be solved by interior point meth-
ods (Boyd & Vandenberghe, 2004). The basic idea
of the interior point methods is to keep the solution
strictly inside the feasible region; the inequality con-
straints are replaced with a smooth function φ that
grows infinitely high at the boundary of the feasible
region, called a barrier function; the strength of the
barrier function is controlled so that the optimum is
attained as a limit. For example, the barrier function
for the dual problem (D′) is written as follows:

φ (α) := −
(

log det
[

λIR

∑n
i=1 αiyiXi∑n

i=1 αiyiX
�
i λIC

]

+
n∑

i=1

log αi +
n∑

i=1

log(1 − αi)

)
.

Note that the negative log of the determinant of a
matrix becomes infinitely large as the matrix becomes
close to singularity. The dual problem (D′) is particu-
larly attractive to solve when the input matrix is large
because the number of variables in the dual problem
is only the number of samples. Now we have the fol-
lowing equality constrained minimization problem,

(DB) min
α∈Rn

n∑
i=1

�∗LR (αi) +
1
t
φ (α) ,

s.t.
n∑

i=1

αiyi = 0,

where the parameter t controls the strength of the bar-
rier. For any finite t, the solution of the problem (DB)
is kept strictly inside the feasible region. The optimal
of the original dual problem (D′) is attained as the
limit t → ∞. Each step in an interior point method
is an equality constrained minimization (DB) which
we can solve efficiently using Newton’s method. More
detail on the implementation are found in appendix B.

3. Application

3.1. Motor-Imagery EEG Classification
Problem

As an application of the proposed matrix coefficient
logistic regression, we consider the motor-imagery
EEG classification problem in the context of Brain-
Computer Interface (BCI). The task is to classify
imagined movement from a single-trial measurement of
EEG signals. The underlying physiology is a spatially
localized band-power modulation known as Event Re-
lated Desynchronization (ERD, see (Pfurtscheller &
da Silva, 1999)). Therefore we take the short-time
variance-covariance matrix for each trial (3 seconds)

as the input matrix. From now on the input X and
the weight matrix W are assumed to be symmetric,
i.e., X ∈ S

C and W ∈ S
C , where C is the number of

electrodes.

3.2. Experimental Settings

We use 60 BCI experiments (Blankertz et al., 2006)
from 29 subjects where the subjects performed three
imaginary movements, namely “right hand” (R), “left
hand” (L) and “foot” (F) according to the visual cue
presented on the screen, except 9 experiments where
only two classes were performed. Since we focus on bi-
nary classification, all the pairwise combination of the
performed classes produced 162 (= 51 ·3+9) datasets.
Each dataset contains 70 to 600 trials (at median 280)
of imaginary movements. All the recordings come from
the calibration measurements, i.e., no feedback was
presented to the subjects. The signal was recorded
from the scalp with multi-channel EEG amplifiers us-
ing 32, 64 or 128 channels. The signal was sampled at
1000Hz and down-sampled to 100Hz before the pro-
cessing. We reduce the number of channels to at
most 49 channels3 because we were not able to handle
datasets with larger number of channels with the ini-
tial implementation using CVX (see Sec. B.2); the spe-
cialized implementation we present in Sec. B.3 is able
to handle these datasets but all the results presented
in Sec 3.4 is produced using the CVX implementation.

The signal is band-pass filtered at 7-30Hz and the in-
terval 500-3500ms after the appearance of visual cue
is cut out from the continuous EEG signal as a trial
S ∈ R

C×T , where C is the number of electrodes and
T is the number of sampled time points. The in-
put matrix X is defined as X = S̃S̃� ∈ S

C , where
S̃ = 1√

T−1
S
(
IT − 1

T 11�) is the input signal after cen-
tering and scaling. The training data is whitened be-
fore applying all the methods. For the prediction of the
test data, coefficients including the whitening opera-
tion W = Σ−1/2

P W̃Σ−1/2
P for �1- and �2-regularized LR

and wc = Σ−1/2
P w̃c (c = 1, 2) for the rank=2 approxi-

mated LR are used, where Σ−1/2
P is the whitening and

W̃ and w̃c denote the solution on the whitened data
(the methods are explained in the next section). Note
that we did not whitened the training and test data
jointly, which could have improved the performance.

The performance is measured by a chronological val-
idation; that is, all methods are trained on the first

3The following 49 channels are used: F7, F5, F3, F1,
Fz, F2, F4, F6, F8, FC5, FC3, FC1, FCz, FC2, FC4, FC6,
T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1,
CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4,
P6, P8, PO3, POz, PO4, O1, Oz, and O2.



Classifying Matrices with a Spectral Regularization

0 20 40
0

10

20

30

40

50

(a) CSP (6 filters)

LR
 (

L1
)

32%

61%
0 20 40

0

10

20

30

40

50

(b) LR (L2)
LR

 (
L1

)

34%

57%
0 20 40

0

10

20

30

40

50

(c) LR (rank=2)

LR
 (

L1
)

31%

61%

Figure 1. Comparison of the proposed �1 regularized logistic regression against (a) CSP based classifier, (b) full-rank
parameterized LR with Frobenius- (�2-) norm regularization, and (c) rank=2 parameterized LR. The classification error
(in percent unit) is plotted for 162 motor-imagery BCI datasets.

half of the examples and applied on the second half.
The regularization constant λ for the logistic regres-
sion models is chosen out of 20 candidates log-linearly
spaced between 10−2 and 102 by 2×10 cross-validation
on the training set.

3.3. Conventional Approaches

We compare the spectrally �1-regularized logistic re-
gression (LR) classifier (see Eq. (2) and (P)) against
previously proposed methods, namely, Common Spa-
tial Pattern (CSP) based classifiers (Koles, 1991;
Ramoser et al., 2000), �2-regularized LR and the
rank=2 approximated LR (Tomioka et al., 2007).

CSP based classifier, which is a popular technique in
BCI, takes a two stage approach. In the first stage, a
dimensionality reduction technique called CSP (Koles,
1991) is used; in fact, it is based on simultaneous diago-
nalization of the covariance Σ+ and Σ−, where Σ± are
the covariance matrices estimated within each class;
then the EEG signal is projected into nof components
using the top nof eigenvectors selected according to the
eigenvalues. In the second stage, a linear discriminant
classifier is trained on the log-power of the nof pro-
jected signals (see (Ramoser et al., 2000)). We choose
nof = 6 according to a common practice.

Two previously proposed LRs differ from the proposed
method in the following way: �2-regularized LR uses
the Frobenius norm for regularization; in the rank=2
approximated LR, coefficient matrix W ∈ S

C is explic-
itly parameterized with two vectors wc ∈ R

C (c = 1, 2)
as follows:

Wr2 =:
1
2
(−w1w

�
1 + w2w

�
2

)
. (8)

3.4. Classification Performance

In Fig. 1 the proposed �1-logistic regression (LR) is
compared against three methods, namely (a) CSP
based classifier (b) �2-regularized LR and (c) rank=2
constrained LR. For each dataset the chronological test
error of the proposed method is plotted against that
of the conventional method as a cross. Crosses ly-
ing below the diagonal corresponds to datasets that
the proposed method outperforms conventional meth-
ods. The proportions of datasets lying above/below
the diagonal are shown at the top-left/bottom-right
corners. All three comparison show that the pro-
posed method significantly outperforms the conven-
tional methods, the p-values are 6.6×10−7, 3.5×10−4,
and 2.9 × 10−5, respectively, based on the paired-
sample Wilcoxon signed rank test.

3.5. Extracted Features

Figure 2 (a) illustrates the model selection process for
a single dataset. Figure 2 (b) shows the eigenvalue
spectrum for various values of λ including the one se-
lected by cross validation. We see that as the regu-
larization become stronger, the number of eigencom-
ponents with eigenvalues significantly larger than zero
become smaller. At the selected λ = 8.86, only two
components are used. The average number of the se-
lected components over all datasets were 4.4, which
roughly agrees with the common practice of using 4-6
components of CSP decomposition. The two eigenvec-
tors used in the dataset in Fig. 2 are shown in Fig. 3.
The coefficients are color-coded and topographically
mapped on a scalp viewed from above (nose pointing
upwards). We observe a strong focus on the central
area, which is known as the motor cortex and the lat-



Classifying Matrices with a Spectral Regularization

0.01 0.1 1 10 100
0

10

20

30

40

50

60

Regularization constant (λ)

E
rr

or
 (

%
)

(a)
Test
Model Selection

0 10 20 30 40 50
−15

−10

−5

0

5

10

15

Eigencomponents
E

ig
en

va
lu

es

(b)
0.01
0.48329
3.3598
8.8587 (selected)

Figure 2. (a) A model selection example. The blue line
with error-bars show the cross-validation error on the train-
ing set for one dataset; the model λ = 8.86 is chosen,
which gives the minimum error. The magenta line shows
the chronological test error. (b) Eigenvalue spectrums for
various values of λ.

−1.3117 1.3971

Figure 3. Spatial filter coefficients topographically mapped
on a scalp. The two eigenvectors in Fig. 2 (b) at λ = 8.86
are multiplied by the whitening transformation and plot-
ted. Coefficients are appropriately scaled and color coded
as red-green-blue from positive to negative. Eigenvalues
are also plotted above the patterns.

eralization corresponding to left- or right-hand motor
imagination.

3.6. Rank=2 Approximated Logistic
Regression Uses �1-regularization

Here we show that the sum of the squared norms of
w1 and w2, which is the regularizer in the rank=2
constrained logistic regression (Tomioka et al., 2007),
is actually the spectral �1-norm of Wr2 (Eq. (8)).

First, we assume that the vectors (w1,w2) are orthog-
onal to each other because the non-orthogonality only
increases the regularization term without contribut-
ing to the loss term. In fact it was shown that one
can always “orthogonalize” a pair (w1,w2) without in-
creasing the objective function (Tomioka et al., 2006).
Second, we rewrite Eq. (8) as follows:

Wr2 =
1
2

(
w1

‖w1‖
w2

‖w2‖
)(‖w1‖2 0

0 ‖w2‖2

)⎛⎝−w�
1

‖w1‖
w�

2
‖w2‖

⎞
⎠ ,

where ‖w‖ =
(∑C

c=1 w2
c

)−1/2

is the Euclidian norm.
We conclude the following from the orthogonality and
the definition of the singular values:

‖Wr2‖1 =
1
2
(‖w1‖2 + ‖w2‖2

)
.

The superiority of rank=2 parameterization to
�2-regularized full rank parameterization reported
by (Tomioka et al., 2007) along with our results
strongly suggests the appropriateness of the �1-
regularization in this context.

4. Discussion

4.1. Probabilistic Interpretation of the Dual
Variables

Since our dual problem is a regularized maximum en-
tropy (MaxEnt) problem, the dual variable α has a
natural probabilistic interpretation. First, we repa-
rameterize the dual variable as follows:

pi =

{
1 − αi (yi = +1)
αi (yi = −1)

(i = 1, . . . , n).

Indeed from the definition of the regression function
(Eq. (2)) and the KKT condition (Eq. (11)), we can
see that pi is the probability the classifier assigns to the
i-th sample to be in the positive class. We can rewrite
the dual problem (D) using p = {pi}n

i=1 instead of α
as follows,

max
p∈Rn

n∑
i=1

H2 (pi)

s.t. 0 ≤ pi ≤ 1 (i = 1, . . . , n),
n∑

i=1

(yi − E [yi|pi]) = 0, (9)

∥∥∥∥∥
n∑

i=1

(yi − E [yi|pi]) Xi

∥∥∥∥∥
∞

≤ λ, (10)

where H2(p) = −�∗LR(p) is the binary entropy func-
tion and E[yi|pi] := 2pi − 1 is the expectation of the
label given pi. It is now clear that the last two con-
straints (Eqs. (9) and (10)) are bounding the deviation
of the empirical statistics from the prediction of the
classifier. The deviation of the matrix-valued statis-
tics (Eq. (10)) is measured by the spectral �∞-norm.
The regularization promotes simpler model by allow-
ing a loose fit; the tightness of the fit is controlled
by the regularization constant λ. Moreover, from the
complementary slackness we can show that the weight
matrix has a projection only for subspace that the in-
equality constraint (Eq. (10)) is satisfied with equality,
i.e., subspace corresponding to singular values equal λ.
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More general discussion on regularized MaxEnt can be
found in (Dud́ık et al., 2004; Altun & Smola, 2006)

4.2. Variations on Regularization

We obtain many previously proposed methods by
choosing a different regularization. First, if we choose
the Frobenius norm (�2-norm) instead of the spectral
�1-norm, we obtain a MAP estimation problem with a
Gaussian prior on the regression coefficients, which is
often called a kernel logistic regression (see (Jaakkola
& Haussler, 1999) for a more general discussion). In
the context of EEG classification (see Sec. 3) the ker-
nel can be identified as K(S̃i, S̃j) := Tr

[
S̃iS̃

�
i S̃jS̃

�
j

]
.

Second, if we choose the element-wise �1-norm, i.e.,
‖W‖elm =

∑
i≥j |wij |, we obtain the popular �1-

regularization known as LASSO (Tibshirani, 1996).
Note that both regularizations ignore the fact that the
input is a matrix. Indeed, they are invariant to any
permutation of the elements of the matrix. On the
other hand our spectral �1-regularization is specifically
defined for matrices; it is only invariant to orthogonal
transformation from both sides, e.g., row or column
permutations.

4.3. Alternative loss function

The general framework we have presented in Sec. 2
allow us to use any loss functions for classification.
For example, if we take the hinge loss, we obtain a
Semidefinite Program (SDP), because the hinge loss
�H(z) = max{0, 1 − z} is a piecewise linear function.
The advantages of the hinge loss are the following two;
first there are plenty of optimization algorithm in the
market to efficiently solve SDP; second, because the
hinge loss enforces sparsity also in the dual variables,
it might be useful when we face a flood of examples,
e.g., in an online training of a classifier, where one
needs a criterion to discard some of the examples.

In Fig. 4 the hinge loss �H(z) and the dual hinge loss
�∗H(α) := − infz(αz+�H(z)) are compared to the coun-
terparts in logistic regression. The difference appears
strikingly in the dual loss, although it might seem to
be negligible in the primal (Fig. 4 (a)). It is also in-
teresting to compare what the KKT conditions of the
two approaches tell. The dual variables in the logistic
regression never reach α = 0 or 1 because they have
a probabilistic interpretation as the certainty of the
classifier (see Sec. 4.1). On the other hand, in the case
of hinge loss, all samples other than support vectors
become either totally inactive α = 0 or margin errors
α = 1.

(a) primal losses

O 1

Hinge Loss
Logistic Loss

(b) dual losses

O 1

Hinge Loss
Logistic Loss

Figure 4. Comparison of the hinge loss to the logistic loss.

5. Conclusion

In this paper, we have proposed a new framework for
the classification of matrices. We have introduced the
spectral �1-norm and the �∞-norm in the space of the
weight matrix and the input matrices, respectively.
The spectral �1-regularization in the weight matrix
space provides not only a principled way of complexity
control but also an elegant low rank solution that con-
centrates all the discriminative information in a few
components. Using the LMI technique we have formu-
lated the inference task as a single convex optimization
problem. The optimization can be efficiently done us-
ing an interior point method in the dual formulation.

We have applied our method to the single trial EEG
classification problem in the context of BCI. The pro-
posed method significantly outperforms conventional
methods that use (a) pre-specified number of hidden
components or (b) non-sparse �2-regularization with
the same logistic regression model. Moreover, the
method automatically produces a decomposition of the
signal into small number of components; the number of
components is automatically selected. The proposed
method sidesteps the explicit rank constraints, which
usually result in non-convex optimization, by using the
�1-regularization on the singular values of the weight
matrix.

Our current direction is to apply the method to other
multiple-sensor recordings e.g., fMRI signals or com-
puter vision problems. The extension of the method
to regression problems is also an interesting task.
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A. Derivation of the Dual Problem

The Lagrangian of the primal problem (P) is written
as follows:

g(α) = min
W∈R

R×C ,
b∈R,
z∈R

n

[
n∑

i=1

�LR(zi) + λ ‖W‖1

+
n∑

i=1

αi

(
zi − yi

(
Tr
[
W�Xi

]
+ b
))]

=
n∑

i=1

min
zi

(�LR(zi) + αizi)

+ λ min
W∈RR×C

(‖W‖1 − Tr
[
W�(λ−1Pn

i=1αiyiXi

)])

+ min
b∈R

b

(
−

n∑
i=1

αiyi

)

=
n∑

i=1

{
−�∗LR(αi) (0 ≤ αi ≤ 1)
−∞ (otherwise)

+

{
0 (‖∑n

i=1 αiyiXi‖∞ ≤ λ)
−∞ (otherwise)

+

{
0 (

∑n
i=1 αiyi = 0)

−∞ (otherwise),
where the dual loss �∗LR is obtained as follows:

�∗LR := −min
z

(
log(1 + e−z) + αz

)
= α log α + (1 − α) log(1 − α),

where the minimum is attained at

z = log
1 − α

α
. (11)

We obtain the dual problem (D) by negating the ob-
jective function to have a minimization and by mak-
ing the implicit constraints in the above expression
explicit.

B. Implementation

B.1. Specializing for the Symmetric Case

We note that if the input matrix is symmetric X =
X� ∈ S

C , the weight matrix becomes symmetric as
well W = W� ∈ S

C . Thus the LMIs (Eq. (6) and (7))
can be simplified into two smaller LMIs as follows:

from Eq. (6),

Q1 = Q2 =
1
2
U, W 	 U, −W 	 U, (12)

from Eq. (7),
n∑

i=1

αiyiXi 	 λIC , −
n∑

i=1

αiyiXi 	 λIC . (13)
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B.2. Primal Optimization

First we show a simple implementation of the pri-
mal problem (P′) with the symmetry assumption
(Eq. (12)) using CVX (Grant et al., 2006). CVX is a
MATLAB toolbox for convex optimization, which is
amazingly simple and intuitive to use. Table 1 shows
the complete MATLAB code. Currently CVX uses Se-
DuMi (Sturm, 1999) as the core solver. Unfortunately,
the nonlinearity in the dual problem (entropy) is cur-
rently not handled in CVX; this limitation motivated us
to develop a specialized implementation that mainly
works on the dual variables (see Secs. 2.3 and B.3).

function [W, bias, z]=lrl1(X, Y, lmd)
C = size(X,1); n = length(Y);
cvx_begin sdp
variable W(C,C) symmetric;
variable U(C,C) symmetric;
variable bias;
variable z(n);
minimize sum(log(1+exp(-z)))+lmd*trace(U);
subject to
for i=1:n

Y(i)*(trace(W*X(:,:,i))+bias)==z(i);
end
U >= W; U >= -W;

cvx_end

Table 1. An executable MATLAB code for primal (P′)
based optimization using CVX (Grant et al., 2006).

B.3. Dual Optimization

Here, we present some details on the implementation
of the dual optimization explained in Sec. 2.3.

The optimality condition for the equality constrained
problem (DB) is written as follows:

∂�∗LR(αi)
∂αi

+Tr [F1yiXi] + Tr [F2 (−yiXi)]

− βi + β∗
i + νyi = 0 (i = 1, . . . , n),

(14)

F1

(
λIC −

n∑
i=1

αiyiXi

)
:=

1
t
IC , (15)

F2

(
λIC +

n∑
i=1

αiyiXi

)
:=

1
t
IC , (16)

βiαi :=
1
t

(i = 1, . . . , n), (17)

β∗
i (1 − αi) :=

1
t

(i = 1, . . . , n), (18)
n∑

i=1

αiyi = 0, (19)

where F1, F2 ∈ S
C
+ and βi, β

∗
i (≥ 0) ∈ R (i = 1, . . . , n)

are defined as Eqs. (15)-(18) and ν ∈ R is the La-

Algorithm 1 Interior Point Method in the Dual
Input: data {Xi, yi}n

i=1 Initialize t := 2(C +
n)/(µn log 2)
repeat

t := µt
Solve the modified KKT conditions (Eqs. (14)-
(19)) by Newton’s method for the current t with
the tolerance ε1.

until 2(C + n)/t < ε2

grangian multiplier for the equality constraint. Equa-
tions (14)-(19) are called the modified KKT conditions
because if we take t → ∞ we obtain the KKT condi-
tions of the original dual problem (D′) with the sym-
metry assumption (Eq. (13)). It is known that for any
t > 0, the solution of the modified KKT conditions
gives a primal feasible point (W ∗, b∗) := (F1 − F2, ν).
Moreover, the duality gap associated with the pair of
α and (W ∗, b∗) obtained by solving Eqs. (14)-(19) for
a given t can be shown to be 2(C + n)/t (see (Boyd &
Vandenberghe, 2004)).

The overall algorithm is shown in Algorithm 1. We
start from a small t = 2(C + n)/(n log 2), which cor-
responds to the primal-dual gap associated with the
trivial pair (W, b) = (0, 0) and α = 0. The algorithm
solves the modified KKT conditions (14)-(19) for ev-
ery t and each time t is multiplied by a constant µ; we
empirically choose µ = 20. Additionally, we use the
tolerances ε1 = ε2 = 10−6.

B.4. Computational Costs

The efficiency of the specialized dual optimization
(Sec. B.3) against the simple CVX implementation
based on the primal (Sec. B.2) is shown in Fig. 5.
Both implementations are run on a single dataset with
n = 125 samples. The same tolerance ε = 1.35 × 10−6

(“medium”) is used. The specialized implementation
is 10 times faster when all the 103 electrodes are used.
Note that the improvement is not only due to the dual
formulation but also the specialization to our problem.
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Figure 5. Comparison of the runtimes of the implementa-
tions. Both implementations are run on MATLAB 6.5 on
a computer with 2.4GHz AMD Opteron and 4GB memory.
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