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Abstract. We propose a novel spectral filter optimization algorithm for
the single trial ElectroEncephaloGraphy (EEG) classification problem.
The algorithm is designed to improve the classification accuracy of Com-
mon Spatial Pattern (CSP) based classifiers. The algorithm is based on a
simple statistical criterion, and allows the user to incorporate any prior
information one has about the spectrum of the signal. We show that
with a different preprocessing, how a prior knowledge can drastically
improve the classification or only be misleading. We also show a general-
ization of the CSP algorithm so that the CSP spatial projection can be
recalculated after the optimization of the spectral filter. This leads to an
iterative procedure of spectral and spatial filter update that further im-
proves the classification accuracy, not only by imposing a spectral filter
but also by choosing a better spatial projection.

1 Introduction

A Brain-Computer Interface (BCI) system provides a direct control pathway
from human intentions to computer. Recently, a considerable amount of effort
has been done in the development of a BCI system [1–5]. We will be focusing
on non-invasive, electroencephalogram (EEG) based BCI systems. Such a device
can give disabled people direct control over a neuroprosthesis or over a com-
puter application as tools for communicating solely by their intentions that are
reflected in their brain signals (e.g. [2]).

Recently, machine learning approaches to BCI have proven to be effective by
making the subject training required in the classical framework unnecessary and
compensating for the high inter-subject variability.

The task in this approach is to extract subject-specific discriminability pat-
terns from high-dimensional spatio-temporal signals. With respect to the topo-
graphic patterns of brain rhythm modulations, the Common Spatial Patterns
(CSP) (see [6, 7]) algorithm has proven to be very useful in extracting discrimi-
native spatial projections. On the other hand, the frequency band on which the
classifier operates is either selected manually or unspecifically set to a broad
band filter [7, 3]. Naturally, an automatic method also for the selection of the



frequency band is highly desirable [8, 9]. Here, we present a method for the spec-
tral filter optimization problem, which is based on a simple statistical criterion.
The proposed method is capable of handling arbitrary prior filters based on neu-
rophysiological insights. The proposed method outperforms broad-band filtered
CSP in most datasets. Moreover, a detailed validation shows how much of the
gain is obtained by the theoretically obtained filter and how much is obtained
by imposing a suitable prior filter. Based on the spectral filter obtained by the
proposed method, one can also recalculate the CSP projection; this leads to it-
erative updating of spatio-spectral filter. We show that further improvements in
the classification accuracy can be achieved by iteratively updating.

2 The algorithm

Let us denote by X ∈ Rd×T the EEG signal of a single trial of imaginary
motor movement3, where d is the number of electrodes and T is the number of
sampled time-points in a trial. We consider a binary classification problem where
each class, e.g. right or left hand imaginary movement, is called positive (+) or
negative (−) class. The task is to predict the class label for a single trial X.

Throughout this paper, we use a feature vector, namely log-power features,
defined as follows:

φj(X; wj , Bj) = log w†
jXBjB

†
jX

†wj (j = 1, . . . , J), (1)

where the upper-script † denotes a conjugate transpose or a transpose for a real
matrix, wj ∈ Rd is a spatial projection that projects the signal into a single
dimension and Bj ∈ RT×T denotes the linear time-invariant temporal filter,
which is an identity matrix in the case of conventional CSP algorithm. The
training of a classifier is composed of two steps. In the first step, the coefficients
wj and Bj are optimized. In the second step, the Linear Discriminant Analysis
(LDA) classifier is trained on the feature vector.

We use Common Spatial Pattern (CSP) algorithm [6, 7], a well known tech-
nique for the spatial filter optimization. Given a set of trials and the labels
{Xi, yi}n

i=1 (Xi ∈ Rd×T , yi ∈ {+1,−1}), the CSP is formulated so that the pro-
jection maximize the power of the projected signal for one class and minimize
that for the other class. This principle can be written as follows:

max
w∈Rd

w† 〈
XX†〉

+
w

w† 〈XX†〉−w
. (2)

where the angled brackets denote expectation within a class. Furthermore, it is
known that the solution is easily obtained by solving the following generalized
eigenvalue problem:

Σ+w = λΣ−w, (3)

3 For simplicity, we assume that the trial mean is already subtracted and the signal is
scaled by the inverse square root of the number of time-points. This can be achieved
by a linear transformation X = 1√

T
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where we call Σc :=
〈
XX†〉

c
∈ Rd×d (c ∈ {+,−}) the sensor covariance matrix.

The eigenvector corresponding to the largest eigenvalue of Eq. (3) is the optimum
of the problem (2). In addition, the minimization of the problem (2) gives another
projection that may be equivalently powerful in the classification. Moreover, it
is often observed that the second or the third eigenvectors have fairly good
discrimination. Therefore, we take the eigenvectors corresponding to the largest
and the smallest nof eigenvalues for each side. Thus, J = 2nof in Eq. (1).

Given a spatial projection, the next question is how to optimize the temporal
filter B in Eq. (1). We formulate this problem in the frequency domain, because
any time-invariant operation B is diagonalized in the frequency domain. We
state the problem as follows:

max
α

〈s(w, α)〉+ − 〈s(w, α)〉−√
Var [s(w, α)]+ + Var [s(w,α)]−

, (4)

s.t. αk ≥ 0 (∀k = 1, . . . , T ),

where we write the power spectrum of the signal projected with w as {sk(w)}T
k=1,

the spectrum of the filter as α := {αk}T
k=1 and s(α, w) :=

∑T
k=1 αksk(w).

The optimal filter coefficient is explicitly written as follows:

α
(+)
k

opt ∝





〈sk(w)〉+ − 〈sk(w)〉−
Var [sk(w)]+ + Var [sk(w)]−

〈sk(w)〉+ − 〈sk(w)〉− ≥ 0,

0 otherwise,
(5)

because the spatio-temporally filtered signal s(w, α) is linear with respect to the
spectral filter coefficients {αk}T

k=1 and we additionally assume that the signal is
a stationary Gaussian process, where the frequency components are independent
to each other for a given class label; thus Var [s(w,α)]c =

∑T
k=1 α2

kVar [sk(w)]c.

Note that the labels (+ and −) are exchanged for {α(−)
k

opt}T
k=1, the filter for

the “−” class. The norm of the filter coefficients cannot be determined from the
problem (4). Therefore, in practice we normalize the coefficients so that they
sum to one.

Furthermore, we can incorporate our prior knowledge on the spectrum of the
signal during the task. This can be achieved by generalizing from Eq. (5) to:

α
(c)
k =

(
α

(c)
k

opt)q

· (βk)p (c ∈ {+,−}), (6)

where {βk}T
k=1 denotes the prior information, which we define specific to a prob-

lem (see Sec. 3). The optimal values for p and q should depend on the data,
preprocessing, and the prior information {βk}T

k=1. Therefore one can choose
them by cross validation.

Now, using the CSP projection w and the optimized spectral filter α, the
log-power feature (Eq. (1)) is written as follows:

φj(X;wj ,αj) = log
T∑

k=1

α
(j)
k w†

jx̂kx̂†kwj (j = 1, . . . , J), (7)

where x̂k ∈ Cd denotes the k-th component of the Fourier transform of X.



3 Results

3.1 Experimental setup

Data acquisition We use 162 datasets of motor-imagery BCI experiment from
29 healthy subjects. Each dataset contains EEG signal recorded during 70-600
(varying from a dataset to another at median 280) trials of one of the pairwise
combinations of three motor imagination tasks, namely right hand (R), left hand
(L) or foot (F) (see [9, 5] for the detail).

Preprocessing of the signals We band-pass filter the signal from 7-30Hz and
cut out the interval of 500-3500ms after the appearance of the visual cue on
the screen, which instructs the subject which imagination to perform, from the
continuous EEG signal for each execution of imaginary movement as a trial.
Only in Sec. 3.3, we also use the signal without the band-pass filter step, in
order to investigate the effect of assuming this band (7-30Hz) on the design
of a filter; except the band-pass filtering, the signal was equally processed as
described above.

Classification We use the log-power feature (Eq. (1)) with nof = 3 features for
each class and LDA as a classifier.

Prior information We test two prior filters {βk}T
k=1, namely:

– with the wide-band 7-30Hz assumption:

βk = I
[7, 30]
k · (〈sk(w)〉+ + 〈sk(w)〉−

)/
2, (8)

– without the assumption:

βk =
(〈sk(w)〉+ + 〈sk(w)〉−

)/
2, (9)

where I
[7, 30]
k is an indicator function that takes value one only in the band 7-

30Hz, and otherwise zero. Since we have already band-pass filtered the signal
in order to calculate CSP, it is reasonable to restrict the resulting filter to take
values only within this band. The second term, which is the average activity of
two classes, express our understanding that in the motor imagery task, good dis-
crimination is most likely be found at frequency bands that correspond to strong
rhythmic activities, i.e., µ- and β-rhythms; the modulation of these rhythms is
known as Event Related Desynchronization (ERD) and well studied. However,
this might not be the case if we don’t suppose the interesting signal to lie within
the 7-30Hz interval as in the second prior filter (Eq. (9)). The comparison is
shown in Sec. 3.3.

Furthermore, since the optimal filter (Eq. (5)) and the prior filter (Eqs. (8)
or (9)) scale with powers −1 and 1 of the spectrum, respectively, we reparameter-
ize the hyperparameters as p = p′+ q′ and q = q′. Thus, if p′ = c the filter scales



with the power c regardless of which q′ is chosen. Therefore, the contributions
of the scale and the discriminability are separated in the new parameterization.
Now, for the prior filter (8), using p′, the scaling exponent of the filter and q′,
the intensity of the label information, we can write Eq. (6) as follows:

αk ∝ I
[7, 30]
k ·





(“
s
(+)
k −s

(−)
k

”“
s
(+)
k +s

(−)
k

”

v
(+)
k +v

(−)
k

)q′

· (s(+)

k + s(−)

k

)p′
s(+)

k − s(−)

k ≥ 0

0 otherwise.
(10)

where the following short-hands are used: s(c)
k := 〈sk(w)〉c and v(c)

k := Var [sk(w)]c.
The filter with the prior filter (9) is simply Eq. (10) without the indicator I

[7, 30]
k .

3.2 Comparison with CSP

First, we compare the proposed method with the prior filter (Eq. (8)) with con-
ventional CSP [6, 7] algorithm. The spatial projection for the proposed method
is the CSP itself. Therefore, the only difference is that we incorporate a non-
homogeneous weighting of the spectrum (see Eq. (7)). The hyperparameters for
the proposed method were fixed at p′ = 0 and q′ = 1 (p = 1 and q = 1 in the
original parameterization), which corresponds to the direct product of Eqs. (5)
and (8).

Figure 1 shows the 10×10 cross-validation errors of CSP and the proposed
method for each dataset as a single point. Data-points lower than the diagonal
correspond to datasets where the proposed method outperforms CSP.

As a visualization, the spectral filter corresponding to conventional CSP, the
theoretically obtained filter (Eq. (5)), the prior filter (Eq. (8)) and the resulting
spectral filter are shown in Fig. 2 for a CSP projection in a single dataset. The
conventional CSP is purely an operation in the spatial domain. Therefore, as a
spectral filter it has a flat spectrum as shown in the top-left corner. The pro-
posed method (bottom-left corner) is a combination of the theoretically obtained
filter (Eq. (5)) shown in the bottom center and the prior filter (Eq. (8)) shown
in the bottom-right corner. The theoretically obtained filter (Eq. (5)) scales
with the power −1 of the spectrum. This means that it compares frequency
components with different ranges in a fair manner; the signal is first scaled
down by a factor 1 /

√
v
(+)
k

+v
(−)
k

(whitening) and then summed with a weighting
(s(+)

k − s
(−)
k )+ /

√
v
(+)
k

+v
(−)
k

. This effect is clearly seen in the bottom center. The
theoretically obtained filter has two peaks, one approximately at 12Hz and the
other at 24Hz, although in the original scale the difference between two classes
around 24Hz is hardly seen (top center). The scale −1 is also favorable from
another point of view, namely invariance; one can apply an arbitrary (non-zero)
spectral filter to the signal before calculating Eq. (5) yet the effect is canceled out
by Eq. (5). On the other hand, since the signal is already band-pass filtered from
7-30Hz, a prior filter is always peaked at frequency components corresponding
to strong rhythmic activities (e.g.., µ- or β-rhythm) regardless of whether they
have discriminative information or not. The resulting filter (bottom left), which



is a direct product of the two filters in this case (because p = 1 and q = 1), has
two peaks but the peak at 12Hz is larger than the peak at 24Hz. The optimal
combination of the theoretical optimum and the prior filter is discussed in the
next session.
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Fig. 1. The 10×10 cross-validation errors of conventional CSP and the proposed
method on 162 datasets. Points lower than the diagonal correspond to datasets where
the proposed method outperforms CSP. The conventional CSP weights the spectrum
homogeneously (Eq. (1) with Bj = IT or Eq. (7) with αk = 1 (∀k)) while the proposed
method weights the spectrum according to Eq. (10)). The hyperparameters were fixed
at p′ = 0 and q′ = 1 (the direct product of Eqs. (5) and (8)).

3.3 Comparison of the two prior filters

In the previous section, we have shown that the combination of the theoreti-
cal optimum (Eq. (5)) and the prior filter (Eq. (8)) outperforms CSP in most
datasets. However, it is still unclear whether the hyperparameters p′ = 0 and
q′ = 1 are optimal or not. Furthermore, the range of validity of the prior filter
(Eq. (8)) is not clear.

Therefore, in this section, we investigate two prior filters (Eqs. (8) and (9)).
The first prior filter (Eq. (8)) focuses on the strong activity within the interval 7-
30Hz. The second filter (Eq. (9)) also focuses on the strong activity but without
the constraint, i.e., the wide-band 7-30Hz assumption.

In order to compare these two prior filters appropriately, we take the following
two steps approach. In the first step, we optimize the spatial filter. Each dataset
is band-pass filtered from 7-30Hz and the CSP projection with nof = 3 patterns
for each class is calculated on the whole dataset and fixed. In the second step,
in order to investigate the optimal design of a spectral filter, we conduct a cross
validation on the signal without pre-filtering.

Note that this validation differs from that in the previous section in two folds:
firstly, the optimization of the spatial filter was done on the whole dataset in the
first step and fixed during the validation, secondly, the spatial filter was calcu-
lated on the pre-filtered signal but applied on the signal without pre-filtering.
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Fig. 2. (top center) The class-averaged spectrum of the original signal projected with
a CSP projection shown in the top right corner. (top left) The conventional CSP in the
spectral domain. (bottom left) The filter spectrum obtained by the proposed method.
(bottom center) The theoretically obtained filter (Eq. (5)). (bottom right) The prior
filter (Eq. (8)). (top right) The CSP projection topographically mapped on a head
viewed from above. The head is facing the top of the paper.

Figures 3(a) and 3(b) show the contour plot of the average cross-validation
error for all combinations of p′ ∈ [−2, 2] and q′ ∈ [0, 8] on a 0.2 interval grid for
the two prior filters (Eqs. (8) and (9)), respectively. Figure 3(a) shows that the
non-homogeneous weighting of the spectrum improves the classification accuracy
(p′ = 0, q′ = 1 is better than p′ = 0, q′ = 0), which is consistent with Fig. 1,
and incorporating the prior filter is also effective (p′ = 0, q′ = 1 is better than
p′ = −1, q′ = 1). On the other hand, Fig. 3(b) shows a completely different
picture. Since the wide-band assumption is not adopted in the prior filter (9),
it weights not only µ- or β-band but also the strong brain activity lower than
7Hz, which does not correspond to motor imagery task or even which cannot be
considered a rhythmic activity. Thus the prior information is not so much useful
anymore. The basin of the classification error is now shifted to approximately
p′ = −1 where the spectrum is whitened. The theoretical optimum (Eq. (5)) is
now in the region that gives minimum classification error. Note that however the
overall error is lower in Fig. 3(a) compared to that in Fig. 3(b). Therefore, in
practice the wide-band assumption appears to help though the aim of this section
was to show that in general, without the wide-band assumption, it is necessary
that one scales down the filter inversely to the power of the signal (Eq. (5)).

3.4 Iterative update of spatio-spectral filter

Although we have so far used the CSP projection as a spatial projection and
focused on the optimization of the spectral filter, one can also recalculate the
spatial projection after the optimization of the spectral filter. In order to in-
corporate the spectral filter, we generalize the definition of the sensor covari-
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Fig. 3. The contour plot of the average cross-validation errors over 162 datasets in
the two dimensional hyperparameter space. Unlike in Sec. 3.2 or in Sec. 3.4 the cross-
validation was carried out on the signal without pre-filtering with a pre-computed spa-
tial pattern. Points corresponding to the CSP, the theoretically derived filter (Eq. (5)),
the prior filter, and the direct product of the two filters (p′ = 0, q′ = 1) are marked.
The cross validation is 4×4.

ance matrix Σc. Since the covariance matrix of the temporally filtered sig-
nal can be written as V (α) :=

∑T
k=1 αkVk, where Vk = x̂kx̂†k (k = 1, . . . , T )

are the cross spectrum matrices, we solve the generalized eigenvalue problem
Σ+(α)w = λΣ−(α)w instead of Eq. (3) for the recalculation of the spatial pro-
jection, where Σc(α) := 〈V (α)〉c. Starting from uniform spectral coefficients
αk = 1 (∀k), we alternately update the spectral filter and the spatial projection
until convergence, because both steps depend on each other.

Figure 4 shows the improvements in the cross-validation error by iteratively
updating spatio-spectral filter for six subjects. The odd steps correspond to
the spatial projection updates and the even steps are spectral updates. Since
the first step is CSP with homogeneous spectral filter and the second step is
the proposed method without recalculation of the spatial projection, one can
see that the major improvements occur by imposing a spectral filter (the sec-
ond step). However, further improvements after the third step (e.g,. in subject
C) were observed for many datasets. For some subjects (e.g., in subject F) no
improvement in the cross-validation was observed, most likely due to artifacts
whose effects are not localized in the frequency spectrum (e.g. blinking, chewing
or other muscle movements).

4 Conclusion

In this paper, we have proposed a novel spectral filter optimization technique
for CSP [6, 7] based single-trial EEG classifiers. The method is formulated in
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Fig. 4. The cross-validation errors of the iterative updating method for each step are
shown for six subjects from very good classfication accuracy (subject E) to moderate
accuracy (subject B). The median over 162 datasets is also shown (dashed line). The
hyperparameters were fixed at p′ = 0 and q′ = 1 (the direct product of Eqs. (5) and
(8)). The odd steps correspond to spatial projection updates and the even steps are
spectral filter updates. Note that the first step is the conventional CSP itself and the
second step is the proposed method without the recalculation of spatial projection.

the spectral domain, based on a simple statistical criterion. Thus the result is
highly interpretable. The method is capable of handling arbitrary prior filter,
which one can design based on the neuro-physiological understanding of the
EEG signal during the task.

The cross validation on 162 BCI datasets show improved classification accu-
racy compared to the conventional CSP [6, 7]. In comparison to CSP, we have
shown that the non-homogenous weighting of the spectrum improves the classi-
fication accuracy.

Moreover, we have investigated the best combination of the theoretically ob-
tained filter (Eq. (5)) and the prior filter. We have tested two prior filters, namely
the filter with the wide-band 7-30Hz assumption (Eq. (8)) and that without
the assumption (Eq. (9)). We have found that with the wide-band assumption
(Eq. (8)), the best combination is achieved approximately at p′ = 0, q′ = 1, which
corresponds to the direct product of the theoretically obtained filter (Eq. (5)) and
the prior filter (Eq. (8)); it is better than the conventional CSP (p′ = 0, q′ = 0),
the theoretical optimum alone (p′ = −1, q′ = 1) or the prior filter (p′ = 1, q′ = 0).
However, without the wide-band assumption, the prior filter, which assumes the
discrimination to be found at frequency regions that is strongly active, fails
because the activity below 7Hz will tend to dominate without contributing to
discriminability. On the other hand, the theoretically optimal scale p′ = −1,
which whitens the signal, has proved to be favorable without the assumption.
Thus, the prior filter is only valid with the wide-band assumption. In fact, we
note that either CSP or the best combination p′ = 0, q′ = 1 already incorporates
this prior knowledge that “strong activity implies good discrimination”, because
both of them have the scale p′ = 0.



Furthermore, we have tested an iterative updating algorithm of spatio-spectral
filter. We have generalized the CSP algorithm to incorporate a non-homogeneous
weighting of the cross spectrum matrices. The spatial filter and the spectral filter
were updated alternately. We have found by cross validating each step of itera-
tion that although for most datasets the major drop in the cross-validation error
is observed when a spectral filter (the second step) was imposed on the original
CSP pattern (the first step), further improvements in the cross-validation error
were observed after the recalculation of CSP pattern (the third step) in many
datasets.

The proposed method gives highly interpretable spatial filter naturally be-
cause we solve the generalized CSP problem. In addition, the spectral represen-
tation of the temporal filter is favorable not only from the interpretability but
also from providing possibility to incorporate any prior information about the
spectral structure of the signal as we have demonstrated in Sec. 3.
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