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We investigate the family of Augmented Lagrangian (AL) methods for mini-
mizing the sum of two convex functions. In the context of machine learning,
minimization of such a composite objective function is useful in enforcing
various structures, for instance sparsity, on the solution in a learning task.
We introduce a particularly efficient instance of an augmented Lagrangian
method called the Dual Augmented-Lagrangian (DAL) algorithm and discuss
its connection to proximal minimization and operator splitting algorithms in
the primal. Furthermore, we demonstrate that the DAL algorithm for the
trace norm regularization can be used to learn features from multiple data
sources and combine them in an optimal way in a convex optimization prob-
lem.
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1.1 Introduction

Sparse estimation has recently been attracting attention from both theoreti-
cal side (Candes et al., 2006; Bach, 2008; Ng, 2004) and practical side, for ex-
ample, magnetic resonance imaging (Weaver et al., 1991; Lustig et al., 2007),
natural language processing (Gao et al., 2007), and bioinformatics (Shevade
and Keerthi, 2003).

Sparse estimation is commonly formulated in two ways: the regularized
estimation (or MAP estimation) framework (Tibshirani, 1996), and the em-
pirical Bayesian estimation (also known as the automatic relevance deter-
mination) (Neal, 1996; Tipping, 2001). Both approaches are based on opti-
mizing some objective functions, though the former is usually formulated as
a convex optimization and the later is usually nonconvex.

Recently, a connection between the two formulations has been discussed
in Wipf and Nagarajan (2008), which showed that in some special cases the
(nonconvex) empirical Bayesian estimation can be carried out by iteratively
solving reweighted (convex) regularized estimation problems. Therefore, in
this chapter we will focus on the convex approach.Regularized esti-

mation A regularization-based sparse-estimation problem can be formulated as
follows:

min
x∈Rn

L(x) + R(x)︸ ︷︷ ︸
=:f(x)

, (1.1)

where L : Rn → R is called the loss term, which we assume to be convex
and differentiable, R : Rn → R is called the regularizer, which is assumed to
be convex but may be non-differentiable, and for convenience we denote by
f the sum of the two. In addition, we assume that f(x) → ∞ as ∥x∥ → ∞.Finding a zero of

the sum of two
operators

Problem (1.1) is closely related to solving an operator equation

(A + B)(x) ∋ 0, (1.2)

where A and B are nonlinear maximal monotone operators. In fact, if A

and B are the subdifferentials of L and R, respectively, the two problems
(1.1) and (1.2) are equivalent. Algorithms to solve the operator equation
(1.2) are extensively studied and are called operator splitting methods; see
Lions and Mercier (1979); Eckstein and Bertsekas (1992). We will discuss
their connections to minimization algorithms for (1.1) in Sections 1.2.2 and
1.5.Simple sparse es-

timation problem We will make distinction between a simple sparse estimation problem, and
a structured sparse estimation problem. A simple sparse estimation problem
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is written as follows:

min
x∈Rn

L(x) + φλ(x), (1.3)

where φλ is a closed proper convex function1, and is “simple” in the sense
of separability and sparsity, which we define in Section 1.2.1. Examples
of a simple sparse estimation problem include the lasso (Tibshirani, 1996)
(also known as the basis-pursuit denoising (Chen et al., 1998)), the group
lasso (Yuan and Lin, 2006) and the trace norm regularization (Fazel et al.,
2001; Srebro et al., 2005; Tomioka and Aihara, 2007; Yuan et al., 2007).Structured sparse

estimation prob-
lem

A structured sparse estimation problem is written as follows:

min
x∈Rn

L(x) + φλ(Bx), (1.4)

where B ∈ Rl×n is a matrix and φλ is a simple sparse regularizer as in the
simple sparse estimation problem (1.3). Examples of a structured sparse es-
timation problem include the total-variation denoising (Rudin et al., 1992),
wavelet shrinkage (Weaver et al., 1991; Donoho, 1995), fused lasso (Tib-
shirani et al., 2005), and the structured sparsity inducing norms (Jenatton
et al., 2009).

In this chapter, we present an augmented Lagrangian (AL) method
(Hestenes, 1969; Powell, 1969) for the dual of the simple sparse estimation
problem. We show that the proposed dual augmented Lagrangian (DAL) is
equivalent to the proximal minimization algorithm in the primal, converges
super-linearly2, and each step is computationally efficient because DAL can
exploit the sparsity in the intermediate solution. Note that there has been a
series of studies that derived AL approaches using Bregman divergence; see
Yin et al. (2008); Cai et al. (2008); Setzer (2010).

Although our focus will be mostly on the simple sparse estimation problem
(1.3), the methods we discuss are also relevant for the structured sparse
estimation problem (1.4). In fact, by taking the Fenchel dual (Rockafellar,
1970, Theorem 31.2), we notice that solving the structured sparse estimation
problem (1.4) is equivalent to solving the following minimization problem:

min
β∈Rl

L∗(BT β) + φ∗
λ(−β), (1.5)

1. “Closed” means that the epigraph {(z, y) ∈ Rm+1 : y ≥ φλ(z)} is a closed set, and
“proper” means that the function is not everywhere +∞; see e.g., Rockafellar (1970). In
the sequel, we use the word “convex function” in the meaning of “closed proper convex
function”.
2. A sequence xt (t = 1, 2, . . .) converges to x∗ super-linearly, if ∥xt+1−x∗∥ ≤ ct∥xt−x∗∥,
where 0 ≤ ct < 1 and ct → 0 as t → ∞.
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where L∗ and φ∗
λ are the convex conjugate functions of L and φλ, respec-

tively. The above minimization problem resembles the simple sparse esti-
mation problem (1.3) (the matrix BT can be considered as part of the loss
function). This fact was effectively used by Goldstein and Osher (2009) to
develop the split Bregman iteration (SBI) algorithm (see also Setzer (2010)).
See Section 1.5 for more detailed discussion.

This chapter is organized as follows. In the next section, we introduceOrganization
some simple sparse regularizers and review different types of sparsity they
produce through the so called proximity operator. A brief operator theo-
retic background for the proximity operator is also given. In Section 1.3,
we present the proximal minimization algorithm, which is the primal repre-
sentation of DAL algorithm. The proposed DAL algorithm is introduced in
Section 1.4 and we discuss why the dual formulation is particularly suitable
for the simple sparse estimation problem and discuss its rate of convergence.
We discuss connections between approximate AL methods and two oper-
ator splitting algorithms, namely the forward-backward splitting and the
Douglas-Rachford splitting in Section 1.5. In Section 1.6, we apply the trace
norm regularization to a real brain-computer interface dataset for learning
feature extractors and their optimal combination. The computational effi-
ciency of DAL algorithm is also demonstrated. Finally we summarize this
chapter in Section 1.7. Some background material on convex analysis is given
in Appendix.

1.2 Background

In this section, we define “simple” sparse regularizers through the associated
proximity operators. In addition, Section 1.2.2 provides some operator the-
oretic backgrounds, which we use in later sections, especially in Section 1.5.

1.2.1 Simple sparse regularizers

In this section, we provide three examples of simple sparse regularizers,
namely, the ℓ1-regularizer, the group lasso regularizer, and the trace norm
regularizer. Other regularizers obtained by applying these three regular-
izers in a block-wise manner will also be called simple; for example, the
ℓ1-regularizer for the first 10 variables and the group lasso regularizer for
the remaining variables. These regularizers share two important properties.
First, they are separable (in some manner). Second, the so-called proximity
operators they define return “sparse” vectors (with respect to their separa-
bility).
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We need to first define the proximity operator as below; see also Moreau
(1965); Rockafellar (1970); Combettes and Wajs (2005).Proximity opera-

tor
Definition 1.1. The proximity operator corresponding to a convex function
f : Rn → R over Rn is a mapping from Rn to itself and is defined as

proxf (z) = argmin
x∈Rn

(
f(x) +

1
2
∥x − z∥2

)
, (1.6)

where ∥ · ∥ denotes the Euclidean norm.

Note that the minimizer is unique because the objective is strongly convex.
Although the above definition is given in terms of a function f over Rn, the
definition extends naturally to a function over a general Hilbert space; see
Moreau (1965); Rockafellar (1970).

The proximity operator (1.6) defines a unique decomposition of a vector
z as

z = x + y,

where x = proxf (z) and y = proxf∗(z) (f∗ is the convex conjugate of
f). This is called Moreau’s decomposition; see Appendix 1.B. We denote
Moreau’s decomposition corresponding to the function f as follows:

(x, y) = decompf (z). (1.7)

Note that the above expression implies y ∈ ∂f(x) because x minimizes the
objective (1.6) and ∂f(x)+x−z ∋ 0, where ∂f(x) denotes the subdifferential
of f at x.ℓ1-regularizer

The first example of sparse regularizers is the ℓ1-regularizer (or the lasso
regularizer (Tibshirani, 1996)), which is defined as follows:

φℓ1
λ (x) = λ∥x∥1 = λ

n∑
j=1

|xj |, (1.8)

where | · | denotes the absolute value. We can also allow each component
to have different regularization constant, which can be used to include an
unregularized bias term.

The proximity operator corresponding to the ℓ1-regularizer is known as
the soft-threshold operator (Donoho, 1995) and can be defined elementwise
as follows:

proxℓ1
λ (z) :=

(
max(|zj | − λ, 0)

zj

|zj |

)n

j=1

, (1.9)

where the ratio zj/|zj | is defined to be zero if zj = 0. The above expression
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can easily be derived because the objective (1.6) can be minimized for each
component xj independently for the ℓ1-regularizer.Group lasso regu-

larizer The second example of sparse regularizers is the group-lasso (Yuan and
Lin, 2006) regularizer

φG
λ (x) = λ

∑
g∈G

∥xg∥, (1.10)

where G is a non-overlapping partition of {1, . . . , n}, g ∈ G is an index-set
g ⊆ {1, . . . , n}, and xg is a sub-vector of x specified by the indices in g.
For example, the group-lasso regularizer arises when we are estimating a
vector field on a grid over a two-dimensional vector space. Shrinking each
component of the vectors individually through ℓ1-regularization can produce
vectors either pointing along the x-axis or the y-axis but not necessarily
sparse as a vector field. We can group the x- and y-components of the vectors
and apply the group lasso regularizer (1.10) to shrink both components of
the vectors simultaneously.

The proximity operator corresponding to the group lasso regularizer can
be written blockwise as follows:

proxG
λ (z) :=

(
max(∥zg∥ − λ, 0)

zg

∥zg∥

)
g∈G

, (1.11)

where the ratio zg/∥zg∥2 is defined to be zero if ∥zg∥2 is zero. The above ex-
pression can be derived analogous to the ℓ1 case, because the objective (1.6)
can be minimized for each block and from the Cauchy-Schwarz inequality
we have

∥xg − zg∥2 + λ∥xg∥ ≥ (∥xg∥ − ∥zg∥)2 + λ∥xg∥,

where the equality is obtained when xg = czg; the coefficient c can be
obtained by solving the one-dimensional minimization.Trace norm regu-

larizer The last example of sparse regularizers is the trace-norm3 regularizer,
which is defined as follows:

φmat
λ (x) = λ∥X∥∗ = λ

r∑
j=1

σj(X), (1.12)

where X is a matrix obtained by rearranging the elements of x into a matrix
of a prespecified size, σj(X) is the jth largest singular-value of X, and r is
the minimum of the number of rows and columns of X. The proximity

3. The trace norm is also known as the nuclear norm (Boyd and Vandenberghe, 2004) and
the Ky Fan r-norm (Yuan et al., 2007).
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operator corresponding to the trace norm regularizer can be written as
follows:

proxmat
λ (z) := vec

(
U max(S − λ, 0)V T

)
, (1.13)

where Z = USV T is the singular-value decomposition of the matrix
Z obtained by appropriately rearranging the elements of z. The above
expression can again be obtained using the separability of φλ as follows:

∥X − Z∥2
F + λ

r∑
j=1

σj(X)

=
r∑

j=1

σ2
j (X) − 2〈X, Z〉 +

r∑
j=1

σ2
j (Z) + λ

r∑
j=1

σj(Z)

≥
r∑

j=1

σ2
j (X) − 2

r∑
j=1

σj(X)σj(Z) +
r∑

j=1

σ2
j (Z) + λ

r∑
j=1

σj(Z)

=
r∑

j=1

(
(σj(X) − σj(Z))2 + λσj(Z)

)
,

where ∥·∥F denotes the Frobenius norm, and the inequality in the second line
is due to von Neumann’s trace theorem (Horn and Johnson, 1991), for which
equality is obtained when the singular vectors of X and Z are the same.
Singular-values σj(X) is obtained by the one-dimensional minimization in
the last line.Separability and

sparsity Note again that the above three regularizers are separable. The ℓ1-
regularizer (1.8) decomposes into the sum of the absolute values of com-
ponents of x. The group-lasso regularizer (1.10) decomposes into the sum
of the Euclidean norms of the groups of variables. Finally the trace norm
regularizer (1.12) decomposes into the sum of singular-values. Moreover, the
proximity operators they define sparsify vectors with respect to the separa-
bility of the regularizers; see Equations (1.9), (1.11), and (1.13).

Note that the “regularizer” in the dual of the structured sparse estimation
problem (1.5) is also separable, but the corresponding proximity operator
does not sparsify a vector; see Section 1.4.4 for more discussion.

The sparsity produced by the proximity operator (1.6) is a computational
advantage of algorithms that iteratively compute the proximity operator;
see Figueiredo and Nowak (2003); Daubechies et al. (2004); Combettes
and Wajs (2005); Figueiredo et al. (2007); Wright et al. (2009); Beck and
Teboulle (2009); Nesterov (2007). Other methods, for example interior point
methods (Koh et al., 2007; Kim et al., 2007; Boyd and Vandenberghe, 2004),
achieve sparsity only asymptotically.
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1.2.2 Monotone operator theory background

The proximity operator has been studied intensively in the context of
monotone operator theory. This framework provides alternative view on
proximity-operator-based algorithms and forms the foundation of operator
splitting algorithms, which we discuss in Section 1.5. In this section, we
briefly provide background on monotone operator theory; see Rockafellar
(1976a); Lions and Mercier (1979); Eckstein and Bertsekas (1992) for more
details.Monotone opera-

tor A nonlinear set-valued operator T : Rn → 2Rn

is called monotone if
∀x,x′ ∈ Rn,

〈y′ − y, x′ − x〉 ≥ 0, for all y ∈ T (x),y′ ∈ T (x′),

where 〈y, x〉 denotes the inner product of two vectors y, x ∈ Rn.
The graph of a set-valued operator T is the set {(x,y) : x ∈ Rn, y ∈

T (x)} ⊆ Rn ×Rn. A monotone operator T is called maximal if the graph of
T is not strictly contained in that of any other monotone operator on Rn.
The subdifferential of a convex function over Rn is an example of maximal
monotone operator. A set-valued operator T is called single-valued if the
set T (x) consists of a single vector for every x ∈ Rn. With a slight abuse
of notation we denote y = T (x) in this case. The subdifferential of the
function f defined over Rn is single-valued if and only if f is differentiable.
The sum of two set-valued operators A and B is defined by the graph
{(x, y + z) : y ∈ A(x), z ∈ B(x), x ∈ Rn}. The inverse T−1 of a set valued
operator T is the operator defined by the graph {(x, y) : x ∈ T (y), y ∈ Rn}.

Denoting the subdifferential of the function f by Tf := ∂f , we can rewrite
the proximity operator (1.6) as

proxf (z) = (I + Tf )−1 (z), (1.14)

where I denotes the identity mapping. The above expression can be de-
rived from the optimality condition Tf (x) + x− z ∋ 0. Note that the above
expression is single-valued, because the minimizer defining the proximity
operator (1.6) is unique. Moreover, the monotonicity of the operator Tf

guarantees that the proximity operator (1.14) is firmly nonexpansive4. Fur-Proximity opera-
tor is firmly non-
expansive

thermore, proxf (z) = z if and only if 0 ∈ Tf (z), because if z′ = proxf (z),
z − z′ ∈ Tf (z′) and 0 ≤ 〈z′ − z, z − z′ − y〉 for all y ∈ Tf (z).

4. An operator T is called firmly nonexpansive if ∥y′ − y∥2 ≤ 〈x′ − x, y′ − y〉 holds
for all y ∈ T (x), y′ ∈ T (x′), x, x′ ∈ Rn. This is clearly stronger than the ordinary
nonexpansiveness defined by ∥y′ − y∥ ≤ ∥x′ − x∥.
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1.3 Proximal minimization algorithm

The proximal minimization algorithm (or the proximal point algorithm)
iteratively applies the proximity operator (1.6) to obtain the minimizer of
some convex function f . Although it is probably never used in its original
form in practice, it functions as a foundation for the analysis of both AL
algorithms and operator splitting algorithms.

Let f : Rn → R ∪ {+∞} be a convex function that we wish to minimize.
Without loss of generality, we focus on unconstrained minimization of f ;
minimizing a function f0(x) in a convex set C is equivalent to minimizing
f(x) := f0(x) + δC(x) where δC(x) is the indicator function of C.Proximal min-

imization algo-
rithm

A proximal minimization algorithm for minimizing f starts from some
initial solution x0 and iteratively solves the minimization problem

xt+1 = argmin
x∈Rn

(
f(x) +

1
2ηt

∥x − xt∥2

)
. (1.15)

The second term in the iteration (1.15) keeps the next iterate xt+1 in the
proximity of the current iterate xt; the parameter ηt controls the strength
of the proximity term. From the above iteration, one can easily see that

f(xt+1) ≤ f(xt) − 1
2ηt

∥xt+1 − xt∥2.

Thus, the objective value f(xt) decreases monotonically as long as xt+1 ̸=
xt.

The iteration (1.15) can also be expressed in terms of the proximity
operator (1.6) as follows:

xt+1 = proxηtf (xt) = (I + ηtTf )−1(xt), (1.16)

which is called the proximal point algorithm (Rockafellar, 1976a). Since
each step is an application of the proximity operator (1.16), it is a firmly
nonexpansive mapping for any choice of ηt [actually any iterative algorithm
that uses a firmly nonexpansive mapping can be considered as a proximal
point algorithm (Eckstein and Bertsekas, 1992).] Moreover, xt+1 = xt if
and only if 0 ∈ Tf (xt); i.e., xt is a minimizer of f . The connection between
minimizing a convex function and finding a zero of a maximal monotone
operator can be summarized as in Table 1.1.

The iteration (1.15) can also be considered as an implicit gradient step
because

xt+1 − xt ∈ −ηt∂f(xt+1). (1.17)
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Table 1.1: Comparison of the proximal minimization algorithm for convex
optimization and the proximal point algorithm for solving operator equations.

Convex optimization Operator equation

Objective minimize f(x) find 0 ∈ Tf (x)

Algorithm Proximal minimization algorithm Proximal point algorithm

xt+1 = proxηtf (xt) xt+1 = (I + ηtTf )−1(xt)

Note that the subdifferential in the right-hand side is evaluated at the new
point xt+1.

Rockafellar (1976a) has shown under mild assumptions, which also allowConvergence
errors in the minimization (1.15), that the sequence x0, x1, x2, . . . converges5

to a point x∞ that satisfies 0 ∈ Tf (x∞). Rockafellar (1976a) has also shown
that the convergence of the proximal minimization algorithm is super-linear
under the assumption that T−1

f is locally Lipschitz around the origin.
The following theorem states the super-linear convergence of the proximal

minimization algorithm in a non-asymptotic sense.

Theorem 1.2. Let x0, x1, x2 . . . be the sequence generated by the exact
proximal minimization algorithm (1.15) and let x∗ be a minimizer of the
objective function f . Assume that there is a positive constant σ and a scalar
α (1 ≤ α ≤ 2) such that

(A1) f(xt+1) − f(x∗) ≥ σ∥xt+1 − x∗∥α (t = 0, 1, 2, . . .).

Then the following inequality is true:

∥xt+1 − x∗∥
1+(α−1)σηt

1+σηt ≤ 1
1 + σηt

∥xt − x∗∥.

That is, xt converges to x∗ super-linearly if α < 2 or α = 2 and ηt is
increasing, in a global and non-asymptotic sense.

Proof. See Tomioka et al. (2010a).

Assumption (A1) is implied by assuming the strong convexity of f .
However, it is weaker because we only require (A1) on the points generated
by the algorithm. For example, the ℓ1-regularizer (1.8) is not strongly convex
but it can be lower-bounded as in assumption (A1) inside any bounded set
centered at the origin. In fact, the assumption on the Lipschitz continuity of
∂f−1 around the origin used in Rockafellar (1976b) implies assumption (A1)

5. The original statement was “converges in the weak topology”, which is equivalent to
strong convergence in a finite dimensional vector space.
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due to the nonexpansiveness of the proximity operator (1.16); see Tomioka
et al. (2010a) for a detailed discussion.

So far we have ignored the cost of the minimization (1.15). The conver-
gence rate in the above theorem becomes faster as the proximity parameter
ηt increases. However, typically the cost of the minimization (1.15) increases
as ηt increases. In the next section, we focus on how we can carry out the
update step (1.15) efficiently.

1.4 Dual Augmented Lagrangian (DAL) algorithm

In this section, we introduce Dual Augmented Lagrangian (DAL) (Tomioka
and Sugiyama, 2009; Tomioka et al., 2010a) and show that it is equivalent
to the proximal minimization algorithm we discussed in the previous sec-
tion. For the simple sparse estimation problem (1.3) each step in DAL is
computationally efficient. Thus it is practical and can be analyzed through
the proximal minimization framework.

1.4.1 DAL as augmented Lagrangian applied to the dual problem

DAL is an application of the Augmented Lagrangian (AL) algo-
rithm (Hestenes, 1969; Powell, 1969) to the dual of the simple sparse es-
timation problem

(P) min
x∈Rn

fℓ(Ax) + φλ(x), (1.18)

where fℓ : Rm → R is a loss function, which we assume to be a smooth
convex function; A ∈ Rm×n is a design matrix. Note that we have furtherSeparation of the

loss function from
the data matrix

introduced a structure L(x) = fℓ(Ax) from the simple sparse estimation
problem (1.3). This is useful in decoupling the property of the loss function
fℓ from that of the design matrix A. In a machine learning problem, it is
easy to discuss properties of the loss function (because we choose it) but
we have to live with whatever property possessed by the design matrix
(the data matrix). For notational convenience we assume that for η > 0,
ηφλ(x) = φλη(x); for example, see the ℓ1-regularizer (1.8).

The dual problem of (P) can be written as the following minimization
problem:

(D) min
α∈Rm,v∈Rn

f∗
ℓ (−α) + φ∗

λ(v), (1.19)

subject to v = AT α, (1.20)

where f∗
ℓ and φ∗

λ are the convex conjugate functions of fℓ and φλ, respec-



12 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

tively.
Let η be a nonnegative real number. The augmented Lagrangian (AL)

function Jη(α, v; x) is written as follows:

Jη(α,v; x) := f∗
ℓ (−α) + φ∗

λ(v) + 〈x, AT α − v〉 +
η

2
∥AT α − v∥2.

(1.21)

Note that the AL function is reduced to the ordinary Lagrangian if η = 0;
the primal variable x appears in the AL function (1.21) as a Lagrangian
multiplier vector; it is easy to verify that minα,v J0(α,v; x) gives the (sign-
inverted) primal objective function (1.18).

Similar to the proximal minimization approach discussed in the previous
section, we choose a sequence of positive step-size parameters η0, η1, . . . , and
an initial Lagrangian multiplier x0. At every iteration, the DAL algorithm
minimizes the AL function Jηt

(α, v; xt) (1.21) with respect to (α, v) and
the minimizer (αt+1,vt+1) is used to update the Lagrangian multiplier xt

as follows:

(αt+1, vt+1) := argmin
α,v

Jηt
(α, v; xt), (1.22)

xt+1 := xt + ηt(AT αt+1 − vt+1). (1.23)

Intuitively speaking, we minimize an inner objective (1.22) and update (1.23)
the Lagrangian multiplier xt proportionally to the violation of the equality
constraint (1.20). In fact, it can be shown that the direction (AT αt+1−vt+1)
is the negative gradient direction of the differentiable auxiliary function
fηt

(x) := −minα,v Jηt
(α, v;x), which coincides with f(x) at the optimum;

see Bertsekas (1982).
Note that the terms in the AL function (1.21) that involve v are linear,

quadratic, and the convex conjugate of the regularizer φλ. Accordingly, by
defining Moreau’s envelope function (see Appendix 1.B and also Moreau
(1965); Rockafellar (1970)) Φ∗

λ as

Φ∗
λ(y) := min

y′∈Rn

(
φ∗

λ(y′) +
1
2
∥y − y′∥2

)
, (1.24)

we can rewrite the update equations (1.22) and (1.23) as follows:

αt+1 = argmin
α∈Rm

(
f∗

ℓ (−α) +
1
ηt

Φ∗
ληt

(xt + ηtA
T α)︸ ︷︷ ︸

=:ϕt(α)

)
, (1.25)

xt+1 := proxφληt

(
xt + ηtA

T αt+1
)
, (1.26)

where we used the identity proxf (x) + proxf∗(x) = x (see Appendix 1.B).
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See Tomioka and Sugiyama (2009); Tomioka et al. (2010a) for the derivation.

1.4.2 DAL as a primal proximal minimization

The following proposition states that the DAL algorithm is equivalent to
the proximal minimization algorithm in the primal (and thus the algorithm
is stable for any positive step-size ηt); see also Table 1.2.

Proposition 1.3. The iteration (1.25)-(1.26) is equivalent to the proximal
minimization algorithm (1.15) on the primal problem (P).

Proof. The proximal minimization algorithm for the problem (1.18) is writ-
ten as follows:

xt+1 := argmin
x∈Rn

(
fℓ(Ax) + φλ(x) +

1
2ηt

∥x − xt∥2

)
= argmin

x∈Rn

(
fℓ(Ax) +

1
ηt

(
φληt

(x) +
1
2
∥x − xt∥2

))
.

Now we define

Φλ(x; xt) := φλ(x) +
1
2
∥x − xt∥2 (1.27)

and use the Fenchel duality to obtain

min
x∈Rn

(
fℓ(Ax) +

1
ηt

Φληt
(x; xt)

)
= max

α∈Rm

(
−f∗

ℓ (−α)− 1
ηt

Φ∗
ληt

(ηtA
T α; xt)

)
,

(1.28)

where f∗
ℓ and Φ∗

λ(·; xt) are the convex conjugate functions of fℓ and Φλ(·; xt),
respectively. Here, since Φλ(·; xt) is a sum of two convex functions, its
convex conjugate is the infimal convolution (see Appendix 1.A) of the convex
conjugates, i.e.

Φ∗
λ(y; xt) = inf

ṽ∈Rn

(
φ∗

λ(ṽ) +
1
2
∥y − ṽ∥2 + 〈y − ṽ, xt〉

)
. (1.29)

Since, Φ∗
λ(y; xt) = Φ∗

λ(xt + y;0) = Φ∗
λ(xt + y) ignoring a constant term

that does not depend on y, we have the inner minimization problem (1.25).
In order to obtain the update equation (1.26), we turn back to the Fenchel
duality theorem and notice that the minimizer xt+1 in the left-hand side of
Equation (1.28) satisfies

xt+1 ∈ ∂yΦ∗
ληt

(y;xt)|y=ηtAT αt+1 .

Since Φ∗
λ(y; xt) is Moreau’s envelope function of φ∗

λ (ignoring constants), it
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Φλ(x)

φλ(x)

−λ 0 λ

φλ*(y)

Φλ*(y)

Nondifferentiable Differentiable

Figure 1.1: Comparison of Φλ(x; 0) (left) and Φ∗
λ(y; 0) (right) for the one-

dimensional ℓ1-regularizer φλ(x) = λ|x|.

is differentiable and the derivative ∇yΦ∗
ληt

(ηtA
T αt+1; xt) is given as follows

(see Appendix 1.B):

xt+1 = ∇yΦ∗
ληt

(ηtA
T αt+1; xt)

= ∇yΦ∗
ληt

(xt + ηtA
T αt+1;0) = proxφληt

(xt + ηtA
T αt+1),

from which we have the update equation (1.26).

The equivalence of proximal minimization and augmented Lagrangian we
have shown above is not novel and it can be found for example in Rockafellar
(1976b); Ibaraki et al. (1992). However the above derivation can easily be
generalized to the case when the loss function fℓ is not differentiable (Suzuki
and Tomioka, 2010).

It is worth noting that Φλ(·;xt) is not differentiable but Φ∗
λ(·; xt) is.

See Figure 1.1 for a schematic illustration of the case of one-dimensional
ℓ1-regularizer. Both the ℓ1-regularizer φλ and its convex conjugate φ∗

λ are
nondifferentiable at some points. The function Φλ(x) := Φλ(x;0) is obtained
by adding a quadratic proximity term to φλ; see Equation (1.27). Although
Φλ is still nondifferentiable, its convex conjugate Φ∗

λ is differentiable due
to the infimal convolution operator (see Appendix 1.A) with the proximity
term; see Equation (1.29).

The differentiability of Moreau’s envelope function Φ∗
λ makes the DAL

approach (1.25)-(1.26) computationally efficient. At every step, we minimize
a differentiable inner objective (1.25) and use the minimizer to compute the
update step (1.26).
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1.4.3 Exemplary instance: ℓ1-regularizer

In order to understand the efficiency of minimizing the inner objective (1.25),
let us consider the simplest sparse estimation problem: the ℓ1-regularization.

For the ℓ1-regularizer, φλ(x) = λ∥x∥1, the update equations (1.25) and
(1.26) can be rewritten as follows:

αt+1 = argmin
α∈Rm

(
f∗

ℓ (−α) +
1

2ηt

∥∥∥proxℓ1
ληt

(xt + ηtA
T α)

∥∥∥2

︸ ︷︷ ︸
=:ϕt(α)

)
, (1.30)

xt+1 = proxℓ1
ληt

(
xt + ηtA

T αt+1
)
, (1.31)

where proxℓ1
λ is the soft-threshold function (1.9); see Tomioka and Sugiyama

(2009); Tomioka et al. (2010a) for the derivation.
Note that the second term in the inner objective function ϕt(α) (1.30) is

the squared sum of n one-dimensional soft-thresholds. Thus we only need
to compute the sum over the active components J+ := {j : |xt

j(α)| > ληt}
where xt(α) := xt + ηtA

T α. In fact,∥∥∥proxℓ1
ληt

(xt(α))
∥∥∥2

=
n∑

j=1

(proxℓ1
ληt

(xt
j(α)))2 =

∑
j∈J+

(proxℓ1
ληt

(xt
j(α)))2.

Note that the flat area in the plot of Φ∗
λ(y) in Figure 1.1 corresponds to an

inactive component.
Moreover, the gradient and the Hessian of ϕt(α) can be computed as

follows:

∇ϕt(α) = −∇f∗
ℓ (−α) + A proxℓ1

ληt
(xt + ηtA

T α),

∇2ϕt(α) = ∇2f∗
ℓ (−α) + ηtA+AT

+,

where A+ is the sub-matrix of A that consists of columns of A that
corresponds to the active components J+. Again, notice that only the active
components enter the computation of the gradient and the Hessian.

Looking at Figure 1.1 carefully, one might wonder what happens if the
minimizer αt+1 lands on a point where Φ∗

λ(y) starts to diverge from φ∗
λ(y)

(y = −λ, λ in Figure 1.1). In fact, the second derivative of Φ∗
λ is discontinuous

on such a point. Nevertheless, we can show that such an event is rare as in
the following theorem.

Theorem 1.4. Assume the regularizer φλ(x) = λ
∑n

j=1 |xj | (ℓ1-regularizer).
A minimizer x∗ of the objective (1.18) has no component located exactly at
the threshold λ for most λ in the sense that it can be avoided by an arbitrary
small perturbation of λ.
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Proof. Optimality condition for the objective (1.18) with the ℓ1-regularizer
can be written as follows:

x∗ = proxℓ1
λ (x∗ + v∗), v∗ = −AT∇fℓ(Ax∗),

which implies ∥v∥∞ ≤ λ and the complementary slackness conditions

xj ≥ 0 if vj = λ, (1.32a)

xj = 0 if − λ < vj < λ, (1.32b)

xj ≤ 0 if vj = −λ, (1.32c)

for all j = 1, . . . , n. Since the event xj = 0 and vj = −λ or xj = 0 and vj = λ

can be avoided by an arbitrary small perturbation of λ for a generic design
matrix A and a differentiable loss function fℓ, either x∗

j + v∗j > λ (1.32a),
−λ < x∗

j + v∗j < λ (1.32b), or x∗
j + v∗j < −λ (1.32c) holds, which concludes

the proof.

The above theorem guarantees that the inner objective (1.30) behaves like
a twice differentiable function around the optimum for a generic choice of
λ and A. The theorem can immediately be generalized to the group lasso
regularizer (1.10) and the trace-norm regularizer (1.12) by appropriately
defining the complementary slackness conditions (1.32a)–(1.32c).

1.4.4 Why do we apply the AL method to the dual?

One reason for applying the AL method to the dual problem (D) is that some
loss functions are only strongly convex in the dual; e.g., the logistic loss,
which is not strongly convex, becomes strongly convex by taking the convex
conjugate; in general loss functions with Lipschitz continuous gradients
become strongly convex in the dual; see also Section 1.4.5.

Another reason is that the inner objective function does not have the
sparsity we discussed in Section 1.4.3 when the AL method is applied to
the primal. In fact, applying the AL method to the primal problem (P)
is equivalent to applying the proximal minimization algorithm to the dual
problem (D). Therefore, for the ℓ1-case, the “regularizer” φλ(x) is defined
as follows:

φλ(x) := (φℓ1
λ )∗(x) =

{
0 (if ∥x∥∞ ≤ λ),

+∞ (otherwise),

which is the convex conjugate of the ℓ1-regularizer φℓ1
λ . Adding a quadratic

proximity term, we obtain Φλ. By taking the convex conjugate of φλ and
Φλ, we obtain the ℓ1-regularizer φ∗

λ := φℓ1
λ and Moreau’s envelope function
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Φλ(x)

φλ(x)

−λ 0 λ −λ 0 λ

φλ*(y)

Φλ*(y)

DifferentiableNondifferentiable

Figure 1.2: Comparison of Φλ(x) (left) and Φ∗
λ(y) (right) for the primal

application of the AL method to the one-dimensional ℓ1 problem.

Φ∗
λ of the ℓ1-regularizer; see Figure 1.2.
Now from Figure 1.2, we can see that the envelope function Φ∗

λ(y) is
quadratic for |y| ≤ λ, which corresponds to inactive components, and is
linear for |y| > λ, which corresponds to active components. Thus, we need
to compute the terms in the envelope function Φ∗

λ that correspond to both
the active and inactive components. Moreover, for the active components
the envelope function behaves like a linear function around the minimum,
which might be difficult to optimize especially when combined with a loss
function that is not strongly convex.

1.4.5 Super-linear convergence of DAL

The asymptotic convergence rate of DAL approach is guaranteed by clas-
sic results (see Rockafellar (1976a); Kort and Bertsekas (1976)) under mild
conditions even when the inner minimization (1.25) is carried out only ap-
proximately. However the condition to stop the inner minimization proposed
in Rockafellar (1976a) is often difficult to check in practice. In addition, the
analysis in Kort and Bertsekas (1976) assumes strong convexity of the ob-
jective. In our setting, the dual objective (1.19) is not necessarily strongly
convex as a function of α and v; thus we cannot directly apply the result of
Kort and Bertsekas (1976) to our problem, though the result is very similar
to ours.

Here we provide a non-asymptotic convergence rate of DAL, which gener-
alizes Theorem 1.2 to allow for approximate inner minimization (1.25) with
a practical stopping criterion.
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Theorem 1.5. Let x1,x2, . . . be the sequence generated by the DAL algo-
rithm (1.25)-(1.26) and let x∗ be a minimizer of the objective function f .
Assume the same condition (A1) as in Theorem 1.2 and in addition assume
that the following conditions hold:

(A2) The loss function fℓ has Lipschitz continuous gradient with modulus
1/γ, i.e.,

∥∇fℓ(z) −∇fℓ(z′)∥ ≤ 1
γ
∥z − z′∥ (∀z, z′ ∈ Rm). (1.33)

(A3) The proximity operator corresponding to φλ can be computed exactly.

(A4) The inner minimization (1.25) is solved to the following tolerance:

∥∇ϕt(αt+1)∥ ≤
√

γ

ηt
∥xt+1 − xt∥,

where γ is the constant in assumption (A2).

Under assumptions (A1)-(A4), the following inequality is true:

∥xt+1 − x∗∥
1+ασηt
1+2σηt ≤ 1√

1 + 2σηt
∥xt − x∗∥.

That is, xt converges to x∗ super-linearly if α < 2 or α = 2 and ηt is
increasing.

Proof. See Tomioka et al. (2010a).

Note that the above stopping criterion (A4) is computable, since the
Lipschitz constant γ only depends on the loss function used and not on the
data matrix A. Although the constant σ in assumption (A1) is difficult to
quantify in practice, it is enough to know that it exists, because we do not
need σ to compute the stopping criterion (A4). See Tomioka et al. (2010a)
for more details.

1.5 Connections

The AL formulation in the dual is connected to various operator theoretic
algorithms in the primal. We have already seen that the exact application
of DAL corresponds to the proximal point algorithm in the primal (Sec-
tion 1.4.2). In this section, we show that two well known operator splitting
algorithms, namely forward-backward splitting and Douglas-Rachford split-
ting in the primal can be regarded as some approximate computations of
the DAL approach. The results in this section are not novel and are based
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Table 1.2: Primal-dual correspondence of operator splitting algorithms and
augmented Lagrangian algorithms.

Primal Dual

Exact Proximal minimization Augmented Lagrangian
algorithm (Rockafellar,
1976b)

Approximation Forward-backward splitting Alternating minimiza-
tion algorithm (Tseng,
1991)

Douglas-Rachford splitting Alternating direction
method of multipli-
ers (Gabay and Mercier,
1976)

on Lions and Mercier (1979); Eckstein and Bertsekas (1992); Tseng (1991);
see also recent reviews in Yin et al. (2008); Setzer (2010); Combettes and
Pesquet (2010). The methods we discuss in this section are summarized in
Table 1.2.

Note that these approximations are most valuable when the inner min-
imization problem (1.22) is not easy to minimize. In Goldstein and Osher
(2009), an approximate AL method was applied to a structured sparse esti-
mation problem, namely the total-variation denoising.

In this section we use the notation L(x) = fℓ(Ax) for simplicity, since the
discussions does not require the separation between the loss function and
the design matrix as in Section 1.4.

1.5.1 Forward-backward splitting

When the loss function L is differentiable, replacing the inner minimiza-
tion (1.22) by the following sequential minimization steps:

αt+1 = argmin
α∈Rm

J0(α, vt; xt), (1.34)

vt+1 = argmin
v∈Rn

Jηt
(αt+1, v;xt) (1.35)

gives the forward-backward splitting (FBS) algorithm (Lions and Mercier,
1979; Combettes and Wajs, 2005; Combettes and Pesquet, 2010):

xt+1 = proxφληt

(
xt − ηt∇L(xt)

)
. (1.36)

Note that in the first step (1.34), the ordinary Lagrangian (η = 0) is used
and the augmented Lagrangian is only used in the second step (1.35). The
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above sequential procedure is proposed in Han and Lou (1988) and analyzed
in Tseng (1991) under the name “alternating minimization algorithm”.

The FBS algorithm was proposed in the context of finding a zero of the
operator equation (1.2). When the operator A is single valued, the operator
equation (1.2) implies

(I + ηB)(x) ∋ (I − ηA)(x).

This motivates us to use the following iteration

xt+1 = (I + ηB)−1(I − ηA)(xt).

The above iteration converge to the solution of the operator equation (1.2)
if A is Lipschitz continuous and the step-size η is small enough (see Lions
and Mercier (1979); Combettes and Wajs (2005)). The iteration (1.36) is ob-
tained by identifying A = ∇L and B = ∂φλ. Intuitively, the FBS algorithm
takes an explicit (forward) gradient step with respect to the differentiable
term L and then takes an implicit (backward) gradient step (1.17) with
respect to the nondifferentiable term φλ.

The FBS algorithm is also known as the iterative shrinkage/thresholding
(IST) algorithm (see Figueiredo and Nowak (2003); Daubechies et al. (2004);
Figueiredo et al. (2007); Wright et al. (2009); Beck and Teboulle (2009)
and the references therein). The FBS algorithm converges as fast as the
gradient descent on the loss term in problem (1.3). For example, when the
loss term has Lipschitz continuous gradient and strongly convex, it converges
linearly (Tseng, 1991). However, this is rarely the case in sparse estimation
because typically the number of unknowns n is larger than the number
of observations m. Beck and Teboulle (2009) proved that FBS converges
as O(1/k) without the strong convexity assumption. However, since the
Lipschitz constant depends on the design matrix A, it is difficult to quantify
it for a machine learning problem. Nesterov (2007) and Beck and Teboulle
(2009) proposed accelerated IST algorithms that converge as O(1/k2), which
is also optimal under the first order black-box model (Nesterov, 2007). The
connection between the accelerated IST algorithm and the operator splitting
framework is unknown.

1.5.2 Douglas-Rachford splitting

Another commonly used approximation to minimize the inner objective
function (1.22) is to perform minimization with respect to α and v alter-
nately, which is called the alternating direction method of multipliers (Gabay
and Mercier, 1976). This approach is known to be equivalent to the Douglas-
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Rachford splitting (DRS) algorithm (Douglas and Rachford, 1956; Lions and
Mercier, 1979; Eckstein and Bertsekas, 1992; Combettes and Pesquet, 2010)
when the proximity parameter ηt is chosen to be constant ηt = η.

Similar to the FBS algorithm, DRS algorithm splits the operator equa-
tion (1.2) as follows:

(I + ηB)(x) ∋ x − ηy, (I + ηA)(x) ∋ x + ηy.

Accordingly, starting from some appropriate initial point (x0, y0), the DRS
algorithm performs the following iteration:(

xt+1, ηyt+1
)

= decompηA

(
(I + ηB)−1(xt − ηyt) + ηyt

)
,

where with a slight abuse of notation, we denote by (x, y) = decompA (z)
the decomposition x + y = z with x = (I + A)−1(z); note that this implies
y ∈ A(x); see the original definition (1.7).

Turning back to the DAL algorithm (1.22)-(1.23), due to the symmetry
between α and v, there are two ways to convert the DAL algorithm to a
DRS algorithm. First, by replacing the inner minimization (1.22) by the
following steps,

vt+1 = argmin
v∈Rn

Jη(αt, v; xt), αt+1 = argmin
α∈Rm

Jη(α, vt+1; xt),

we obtain the (primal) DRS algorithm:(
xt+1,−ηAT αt+1

)
= decompηL

(
proxφλη

(
xt + ηAT αt

)
− ηAT αt

)
,

(1.37)

where (x, y) = decompηL(z) denotes Moreau’s decomposition (1.7). We can
identify A = ∂L and B = ∂φλ in update equation (1.37). This version of
DRS (“regularizer inside, loss outside”) was considered in Combettes and
Pesquet (2007) for image denoising with non-Gaussian likelihood models.
When the loss function L is differentiable, update equation (1.37) can be
simplified as follows:

xt+1 = proxηL

(
proxφλη

(xt − η∇L(xt)) + η∇L(xt)
)

,

which more resembles the FBS iteration (1.36).
On the other hand, by replacing the inner minimization (1.22) by the
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following steps,

αt+1 = argmin
α∈Rm

Jη(α, vt; xt),

vt+1 = argmin
v∈Rn

Jη(αt+1, v; xt),

we obtain another (primal) DRS algorithm:(
xt+1, ηvt+1

)
= decompφλη

(
proxηL(xt − ηvt) + ηvt

)
. (1.38)

Here, we can identify A = ∂φλ and B = ∂L in update equation (1.38).
This version of DRS (“loss inside, regularizer outside”) was proposed in
Goldstein and Osher (2009) to as an alternating direction method for the
total-variation denoising problem (1.5).

Each step of DRS is a firmly nonexpansive mapping, and thus DRS is un-
conditionally stable (Lions and Mercier, 1979), whereas the stability of FBS
depends on the choice of the proximity parameter η. Moreover, DRS can
be applied in both ways (see update equations (1.37) and (1.38)). In other
words, both the loss function L and the regularizer φλ may be nondifferen-
tiable, whereas FBS assumes that the loss L is differentiable. However, this
also means that both proximity operators need to be implemented for DRS,
whereas FBS requires only one of them (Combettes and Pesquet, 2010).

1.6 Application

In this section, we demonstrate that the trace norm regularizer (1.12) can be
used to learn features from multiple sources and combine them in an optimal
way in a single optimization problem. We also demonstrate that DAL can
efficiently optimize the associated minimization problem.

1.6.1 Problem setting

The problem we solve is a classification problem with multiple matrix-valued
inputs (Tomioka et al., 2010b), namely

min
W (1),...,W (K),

b∈R

m∑
i=1

ℓ
(∑K

k=1〈X
(k)
i , W (k)〉 + b, yi

)
+ λ

K∑
k=1

∥W (k)∥∗,

(1.39)
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where the loss function ℓ is the logistic loss function

ℓ(z, y) = log(1 + exp(−yz)), (1.40)

and ∥ · ∥∗ denotes the trace norm (1.12).
By defining

x =
(
vec(W (1))T , . . . , vec(W (K))T , b

)T
,

fℓ(z) =
m∑

i=1

ℓ(zi, yi),

A : an m × n matrix whose ith row is given as

Ai =
(
vec(X(1)

i )T , . . . , vec(X(K)
i )T , 1

)
,

φλ(x) = λ
K∑

k=1

∥W (k)∥∗,

we can see that problem (1.39) is a special case of problem (1.18).
As a concrete example, we take a data-set from a real brain-computer

interface (BCI) experiment, where the task is to predict whether the up-
coming voluntary finger movement is either right or left hand from the
electroencephalography (EEG) measurements (Blankertz et al., 2002). The
data-set is made publicly available through the BCI competition 2003 (data-
set IV) (Blankertz et al., 2004). More specifically, the data-set consists of
short segments of 28 channel multivariate signal of length 50 (500 ms long
at 100 Hz sampling). The training set consists of m = 316 input segments
(159 left and 157 right) and we tested the classifier on a separate test-set
consisting of 100 test segments.Preprocessing

Following the preprocessing used in Tomioka and Müller (2010), we com-
pute three matrices from each segment. The first matrix is 28 × 50 and is
obtained directly from the original signal by low-pass filtering at 20Hz. The
second matrix is 28×28 and is derived by computing the covariance between
the channels in the frequency band 7-15Hz (known as the α-band). Finally,
the third matrix is 28 × 28 and is computed similarly to the second matrix
in the frequency band 15-30Hz (known as the β-band). The total number of
unknown variables is n = 2969.

We chose 20 log-linearly separated values of the regularization constant
λ from 10 to 0.001. The proximity parameter is increased geometrically as
ηt = 1, 2, 4, 8, . . .; note that after 22 iterations it was as large as 221 ≅
2.1 × 106, which shows that DAL is stable across wide range of ηt. The
Lipschitz constant γ (see assumption (A2) in Theorem 1.5) for the logistic
loss (1.40) is γ = 4. We used the Newton method for the inner minimization
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Figure 1.3: Convergence of DAL algorithm applied to a classification
problem in BCI. The duality gap is plotted against the number of iterations.
Each curve corresponds to different regularization constant λ shown on the
right. Note that no warm start is used. Each iteration consumed roughly 1.2
seconds.

problem (1.25). We implemented DAL in Matlab 6. Each optimization was
terminated when the duality gap fell below 10−3; see Section 1.C.

1.6.2 Results

Figure 1.3 shows the sequence of the duality gap obtained by running the
DAL algorithm on 20 different values of regularization constant λ against the
number of iterations. Note that the vertical axis is logarithmically scaled.
We can see that the convergence of DAL becomes faster as the iteration
proceeds; i.e., it converges super-linearly. Each iteration consumed roughly
1.2 seconds on a Linux server with two 3.33 GHz Xeon processors, and the
computation for 20 values of the regularization constant λ took about 350
seconds. Note that applying a simple warm start can significantly speedup
the computation (about 70% reduction) but it is not used here because we
are interested in the basic behaviour of the DAL algorithm.

Figure 1.4 shows the singular-value spectra of the coefficient matrices
W (1), W (2), and W (3) obtained at the regularization constant λ = 0.5456,

6. The code is available from http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares.
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Figure 1.4: Singular-value spectra of W (1), W (2), and W (3), which cor-
respond to the first-order component, second order (alpha) component, and
second order (beta) component, respectively, obtained by solving optimization
problem (1.39) at λ = 0.5456.
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Figure 1.5: The visualization of the left singular-vector (“filter”) and the
right singular-vector (“time course”) corresponding to the largest singular-
value of W (1). Both “filter” and “pattern” are shown topographically on a
head seen from above. The “pattern” shows the typical activity captured by
the “filter”. See Tomioka and Müller (2010) for more details.

which achieved the highest test accuracy 85%. The classifier has selected
three components from the first data source (first-order component), four
components from the second data source (second-order (α-band) compo-
nent), and five components from the third data source (second-order (β-
band) component). From the magnitude of the singular-values, it seems that
the first-order component and the β-component are the most important for
the classification, whereas the contribution of the α-component is less promi-
nent; see Tomioka and Müller (2010).

Within each data source, the trace norm regularization automatically
learns feature extractors. Figure 1.5 visualizes the spatio-temporal profile of
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the learned feature extractor that corresponds to the leading singular-value
of W (1) in Figure 1.4. The “filter” (left) and the “pattern” (center) visualize
the left singular-vector topographically according to the geometry of the
EEG sensors. The “time course” (right) shows the right singular-vector as a
time-series. Both the “filter” and “pattern” show a clear lateralized bipolar
structure. This bipolar structure together with the downward trend in the
“time course” is physiologically known as the lateralized readiness potential
(or Bereitschaftspotential) (Cui et al., 1999). Note that the “time course”
starts 630 ms and ends 130 ms prior to the actual movement because the
task is to predict the laterality of the movement before it is executed.

1.7 Summary

In this chapter, we have presented the dual augmented-Lagrangian (DAL)
algorithm for sparse estimation problems, and discussed its connections to
proximal minimization and other operator splitting algorithms.

DAL algorithm is an augmented Lagrangian algorithm (Powell, 1969;
Hestenes, 1969; Rockafellar, 1976b; Bertsekas, 1982) applied to the dual of
the simple sparse estimation problem (1.3). For this problem, the sparsity of
the intermediate solution can effectively be exploited to efficiently solve the
inner minimization problem. This link between the sparsity and efficiency
distinguishes DAL from other AL algorithms.

We have shown that DAL is equivalent to the proximal minimization algo-
rithm in the primal, which enabled us to rigorously analyze the convergence
rate of DAL through the proximal minimization framework. We have shown
that DAL converges superlinearly even in case of inexact inner minimization.
Importantly, the stopping criterion we used can be computed in practice;
this is because we have separated the loss function fℓ from the design matrix
A; see Section 1.4.1.

The structured sparse estimation problem (1.4) can also be tackled through
augmented Lagrangian algorithms in the primal (see Goldstein and Osher
(2009); Lin et al. (2009)). However as we discussed in Section 1.4.4, for these
algorithms the inner minimization is not easy to carry out exactly, because
the convex conjugate regularizer φ∗

λ does not produce a sparse vector through
the associated proximity operator.

Currently we are interested in how much the insights we gained about DAL
transfers to approximate augmented Lagrangian algorithms, e.g., alternating
direction method, applied to the primal problem (structured sparse estima-
tion) and the dual problem (simple sparse estimation) and the associated
operator splitting methods in their respective dual problems. Application of
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augmented Lagrangian algorithms to kernel methods is another interesting
direction (Suzuki and Tomioka, 2010).
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Appendix

1.A Infimal convolution

Let f : Rn → R and g : Rn → R be two convex functions, and let f∗ and g∗

be their convex conjugate functions, respectively; That is,

f∗(y) = sup
x∈Rn

(〈y, x〉 − f(x)) , g∗(y) = sup
x∈Rn

(〈y, x〉 − g(x)) .

Then,

(f + g)∗(y) = inf
y′∈Rn

(
f∗(y′) + g∗(y − y′)

)
=: (f∗¤g∗)(y),

where ¤ denotes the infimal convolution.
See (Rockafellar, 1970, Theorem 16.4) for the proof.

1.B Moreau’s theorem

Let f : Rn → R be a convex function, and f∗ be its convex conjugate
function. Then, for x ∈ Rn

proxf (x) + proxf∗(x) = x. (1.41)

Moreover,

f̂(x) + f̂∗(x) =
1
2
∥x∥2, (1.42)

where f̂ is Moreau’s envelope function of f , namely

f̂(x) = min
x′∈Rn

(
f(x′) +

1
2
∥x′ − x∥2

)
.
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Furthermore, the envelope function f̂ is differentiable. The gradient is given
as follows:

∇f̂(x) = proxf∗(x), ∇f̂∗(x) = proxf (x).

See Moreau (1965) and (Rockafellar, 1970, Theorem 31.5) for the proof.
Danskin’s theorem (Bertsekas, 1999, Proposition B.25) can also be used to
show the result. Note that differentiating both sides of Equation (1.42), we
obtain Equation (1.41), which confirms the validity of the above statement.

1.C Computation of the duality gap

We use the same strategy used in Koh et al. (2007); Wright et al. (2009) to
compute the duality gap as a stopping criterion for the DAL algorithm.

Let ᾱt := −∇fℓ(Axt). Note that the vector AT ᾱt does not necessarily
lie in the domain of φ∗

λ in the dual problem (1.19). For the trace norm
regularization, the domain of φ∗

λ is matrices with maximum singular-value
equal to or smaller than λ. Thus we define α̃t = ᾱt min(1, λ/∥AT ᾱt∥),
where ∥ · ∥ is the spectral norm. Notice that ∥AT α̃t∥ ≤ λ by construction.
We compute the dual objective value as d(xt) = −f∗

ℓ (−α̃t). Finally the
duality gap Gapt is obtained as Gapt = f(xt)−d(xt), where f is the primal
objective function (1.18).
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