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1 Principal Component Analysis

Let xi ∈ RD (i = 1, . . . , N) be a collection of data points (e.g., images). The
sample covariance matrix Σ is defined as

Σ :=
1

n

N∑
i=1

(xi − x̄)(xi − x̄)⊤,

where x̄ is the sample mean x̄ := 1
N

∑N
i=1 xi.

Principal components are defined as the leading eigenvectors of the sample
covariance matrix [1, 5], namely

Σuk = λkuk (k = 1, . . . , D),

where uk is called the kth principal component and λ1 ≥ λ2 ≥ · · · ≥ λD.

Exercise 1. For any K = 1, . . . , D, prove that U = [u1, . . . ,uK ] ∈ RD×K (uk

are the eigenvectors of Σ) is the solution of the maximization problem

maximize
U∈RD×K

Tr
(
U⊤ΣU

)
,

subject to U⊤U = IK .

Exercise 2. Let X̄ be the centered data matrix, namely

X̄ := [x1 − x̄,x2 − x̄, . . . ,xN − x̄] ∈ RD×N .

Prove that the left singular vectors ũ1, . . . , ũD obtained by the singular value
decomposition of X̄ coincides with the eigenvectors u1, . . . ,uD. The singular
value decomposition (SVD) of X̄ is defined as

X̄ = ŨSV ⊤,

where Ũ⊤Ũ = ID, V ⊤V = IN , and S is diagonal.

Exercise 3. Let V ⊤ = [v1,v2, . . . ,vN ] be the column slices of the matrix V ⊤

in the above SVD. Prove that the K-dimensional vector obtained by taking the
first K coordinates of vi is exactly the projection of the ith data point xi on the
subspace spanned by the first K principal components u1, . . . ,uK up to scaling.
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2 K-means Clustering

Let xi ∈ RD (i = 1, . . . , N) be a collection of data points. K-means clustering
[4] is a clustering algorithm that iteratively minimize the K-means objective

f((µk)
K
k=1) =

N∑
i=1

min
k=1,...,K

d(xi,µk),

where µk (k = 1, . . . ,K) are the cluster centers and d(·, ·) is a distance function.
Here we take the squared Euclidean distance

d(x,y) = ∥x− y∥22.

The algorithm can be described as follows:

1. Randomly initialize the cluster assignments Z = (zk,i) (zk,i = 1 if the ith
data point belongs to the kth cluster).

2. Iterate until convergence:

(a) For a fixed cluster assignment, update the cluster centers by mini-
mizing the sum of distances, namely

µk ← argmin
µ∈RD

∑
i:zk,i=1

d(xi,µ) (k = 1, . . . ,K). (1)

(b) For fixed cluster centers, assign each data point to the nearest cluster,
namely

zk,i ← argmin
k
∥xi − µk∥22.

Exercise 4. Prove that update (1) with the squared Euclidean distance d(x,y) =
∥x− y∥22 can be written as follows:

µk ←
∑N

i=1 zk,ixi∑N
i=1 zk,i

(k = 1, . . . ,K).

3 Probabilistic Latent Semantic Analysis (pLSA)

Let xi ∈ ZW
+ (i = 1, . . . , D) be a collection of documents. Each document

is represented as bag-of-words; that is, xi = (xji) and xji is the number of
occurrences of the jth word (j = 1, . . . ,W ) in the ith document, where W is
the number of words (or size of the vocabulary).

In this bag-of-words representation, each document can be considered as a
realization from some multinomial distribution. Probabilistic Latent Seman-
tic Analysis (pLSA) [3] assumes that the underlying multinomial distributions
are mixtures of topics, which can be considered as stereotypical distributions
corresponding to e.g., sports, economics, etc. More precisely, we model the
probability of observing the jth word in the ith document as follows:

P (word = j|document = i) =
K∑

k=1

ϕjkπki,
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where ϕjk and πki are parameters defined as follows:

ϕjk := P (word = j|topic = k),

πki := P (topic = k|document = i).

Consequently, the log likelihood of the data xi (i = 1, . . . , D) can be written as
follows:

logP =
N∑
i=1

W∑
j=1

xji log

(∑K

k=1
ϕjkπki

)
(2)

Since it is not easy to directly maximize the log likelihood (2) with respect to
ϕjk and πki, we employ the expectation-maximization (EM) algorithm [2]. More
precisely, we construct a lower bound of the log likelihood as follows (exercise!):

logP ≥
N∑
i=1

N∑
j=1

K∑
k=1

xjiqkji log

(
ϕjkπki

qkji

)
. (3)

Since the above inequality is true for any qkji that satisfies qkji ≥ 0 and∑K
k=1 qkji = 1, we take qkji that maximizes the right-hand side of the lower

bound (3) as follows:

qkji ←
ϕjkπki∑K
k=1 ϕjkπki

. (4)

This is called the E-step. The obtained qkji can be considered as the posterior
mean probability of the jth word in the ith document coming from the kth
topic.

Next, we maximize the right-hand side of the lower bound (3) for the above
qkji as follows:

ϕjk ←
xjiqkji∑W
j=1 xjiqkji

(5)

πki ←
xjiqkji∑K
k=1 xjiqkji

(6)

This is called the M-step. The overall algorithm is to iterate the E- and M-steps
until convergence.

Exercise 5. Prove inequality (3). Hint: Jensen’s inequality.

Exercise 6. Derive the update equations (4), (5), and (6). Note that the con-

straints
∑W

j=1 ϕjk = 1 and
∑K

k=1 πki must be satisfied.

4 Assignments (due July 17th)

Write up on either one of the following two topics using A4 papers and submit
it to the post box of 数理第六研究室. The deadline is Wednesday, July 17th.

1. Solve exercises 1–6.

2. Implement K-means or pLSA. Apply the algorithm to some data set (pro-
vided ones or other data set). Empirically analyze and discuss the results.
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