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We propose a novel approach to solving the electro-/magnetoencephalographic (EEG/MEG) inverse problem
which is based upon a decomposition of the current density into a small number of spatial basis fields. It is
designed to recover multiple sources of possibly different extent and depth, while being invariant with
respect to phase angles and rotations of the coordinate system. We demonstrate the method's ability to
reconstruct simulated sources of random shape and show that the accuracy of the recovered sources can be
increased, when interrelated field patterns are co-localized. Technically, this leads to large-scale mathematical
problems, which are solved using recent advances in convex optimization. We apply ourmethod for localizing
brain areas involved in different types of motor imagery using real data from Brain–Computer Interface (BCI)
sessions. Our approach based on single-trial localization of complex Fourier coefficients yields class-specific
focal sources in the sensorimotor cortices.
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Introduction

Measuring electrical field distributions allows localization of
cognitive processing and is thus of high value for neuroscience research
and medical diagnosis. While invasive measurements provide a very
local assessment of neuronal activations, such a procedure is only
possible in humans when electrodes are already implanted for
treatment/diagnosis of neurological diseases, e.g., epilepsy. Noninvasive
localization techniques based on electro- andmagnetoencephalography
(EEG and MEG) are applicable without restriction and are therefore
highly useful. They have become standard tools for analyzing fast brain
signals such as somatosensory-evoked potentials (SEPs) or ongoing
oscillations. For understanding the respective cognitive processes
spatial patterns (scalp maps) derived from EEG/MEG, however, only
give a rough estimate of the true underlying sources. Thus, for revealing
a more detailed picture a full source reconstruction is required which
involves a mathematical inversion of the (approximately) known
mapping from sources to sensors. Unfortunately, this is an ill-defined
inverse problem since any measurement can be equally well explained
by infinitely many different source distributions.

Therefore, in order to “solve” the inverse problem it is necessary to
impose additional constraints on the solution. Dipole fits (e.g. Scherg
and von Cramon, 1986) and scanning techniques (Schmidt, 1986;
Mosher and Leahy, 1999; Veen and Buckley, 1988; Van Veen et al.,
1997) correspond to directly constraining the number of dipolar
sources. Imagingmethods, in contrast, model a large number of dipoles
and thus allow us to estimate activity in the entire brain at once.
Constraints are here imposed by a dedicated penalty functional
reflecting assumptions on the sources. Perhaps the two most common
assumptions are smoothness (Hämäläinen and Ilmoniemi, 1994;
Pascual-Marqui et al., 1994; Pascual-Marqui, 2002) and focality
(Matsuura and Okabe, 1995; Gorodnitsky et al., 1995; Uutela et al.,
1999; Huang et al., 2006; Ou et al., 2008; Ding and He, 2008; Bolstad
et al., 2009), both of which can be motivated by neurophysiological
arguments. Nevertheless both approaches may deliver implausible
results in practice. In particular, “smooth methods” tend to estimate
sources that spread over a considerable part of the brain which is not
always physiologically meaningful. Estimates obtained by “sparse
methods” tend to be unstable and scattered around the true sources.
Two recent studies suggest that estimates with more plausible extent
and shape canbeobtainedby encouragingboth smoothness and focality
of the sources (Haufe et al., 2008; Vega-Hernández et al., 2008) using
two penalties. Such a hybrid approach has been shown to outperform
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purely smooth respectively focal methods when distinguishing two or
three simulated as well as real sources (Haufe et al., 2008).

In this paper we propose a novel method for EEG/MEG source
reconstruction that achieves a compromise between smoothness and
focality, allowing to model extended sources. This is achieved by
expanding the current density into a sparse combination of spatial
basis fields. Compared with our previous approach Focal Vectorfield
Reconstruction (FVR, Haufe et al., 2008), the presented method
achieves similarly good localization, while allowing a simpler
mathematical formulation. The novel cost function enables the
deployment of a very efficient optimization scheme by which it
becomes possible to solve reconstruction problems involving orders
of magnitude more variables than previously. These additional
variables can be used to localize larger datasets, or to increase the
spatial resolution.

We will derive the proposed methodology in the Methods and
materials section. This section describes the application of our method
to two datasets. The first one is simulated and used for assessing the
source reconstruction quality of our method in comparison to FVR and
other approaches. The second dataset consists of EEG responses
acquired during successful brain–computer interface (BCI) sessions,
where the task was to modulate local μ-rhythms by means of motor
imagery of different limbs. These data are an ideal testbed for source
reconstruction algorithms, since there exists a strong prior knowledge
about the neurophysiological basis underlying a good BCI perfor-
mance. Results on the physical origin of class-related EEG activity
during BCI sessions are presented in the Results section. The
Discussion section contains a general discussion of strengths and
potential drawbacks of current distributed inverse methods and their
inherent assumptions, as well as practical issues regarding regular-
ization. The paper finishes with concluding remarks in the Conclusion
section.

Methods and materials

Localization using sparse basis field expansions

In EEG/MEG source reconstruction we are equipped with mea-
surements of the scalp electrical potential (EEG) or magnetic field
(MEG), from which we would like to infer the generating electrical
current density (sources) in the brain. The EEG/MEG activity is
comprised in a vector z = z1;…; zMð Þ⊤∈CM , where M is the number
of sensors. As the data z could possibly contain responses to Fourier
or wavelet filters it is allowed to take complex values. Let B ⊂ R3

be the volume covered by the brain (i.e. white and gray matter).
The current density is a vector field y: B → C3 assigning a (complex)
vectorial current source to each location in the brain. Consider-
ing a discrete sample of locations (voxels) and source currents
xn; y xnð Þ = : ynð Þ;n = 1; …;N, we denote by Y = y⊤1 ;…; y⊤N

� �⊤ the
N×3 matrix of sources and by vec Yð Þ a column vector containing
the stacked transposed rows of Y. The forward mapping
from the sources Y to the measurements z is linear and can be
written as

z = F vec Yð Þ ð1Þ

using the lead field matrix F∈RM×3N, which can be computed for a
known geometry of the head and known conductive properties of
brain, skull and skin tissues (Baillet et al., 2001).

Model
Instead of estimating the currents yn directly, we propose tomodel

the current density as a linear combination of (potentially many)
spatial basis fields, the coefficients of which are to be estimated. A basis
field is defined here as a vector field, in which all output vectors point
in the same direction, while the magnitudes are proportional to a
scalar (basis) function b: B→ R. Given a set of functions bl; l = 1;…; L
(called a ``dictionary''), the basis field expansion reads.

y xð Þ = ∑
L

l=1
clbl xð Þ; ð2Þ

with coefficient vectors cl ∈C3; l = 1;…; L. By including one complex
coefficient for each dimension, we learn orientations and amplitudes
as well as phases of the complex current vectors in this model. Let
C = c1;…; cLð Þ⊤∈ CL×3 contain the coefficients and

B =
b1 x1ð Þ … bL x1ð Þ

⋮ ⋱ ⋮
b1 xNð Þ … bL xNð Þ

0
@

1
A∈R

N×L ð3Þ

be the basis functions evaluated at all locations xn. The forward model
then reads

z = F vec BCð Þ : ð4Þ

Sparsity, rotational invariance and phase invariance
Solving Eq. (4) for C does not yield a unique solution if the number

of coefficients is larger than the number of electrodes M, which is the
common situation. The ambiguity can be overcome by regularization,
i.e., by imposing additional constraints on the variables. Here, we
assume that, for an appropriately chosen dictionary, the current
density can be well approximated by a small number of basis fields.
This can be achieved by estimating a sparse coefficient matrix C, i.e., a
matrix that has mostly zero entries. Besides the regularizing effect,
sparse decompositions also provide a way of interpreting current
densities by looking at the selected basis functions (those having
corresponding nonzero coefficients in C). The premise for such
interpretability is that the basis functions themselves are simple
enough, which should be ensured when designing the dictionary.

An important property of EEG/MEG source reconstruction algo-
rithms is rotational invariance. That is, the estimated current density
should not change when the coordinate system is rotated. This holds
in general for ℓ2-norm a.k.a. Tikhonov regularized methods, which
deliver non-sparse sources/coefficients. However, if sparsity is desired,
additional effort is needed. For example, penalizing the ℓ1-norm
(the sum of absolute values of the entries) of C leads to a sparse
expansion, but not to rotational invariance. Theℓ1-norm penalty does
not couple the three dimensions of the current density, making it very
probable that different coefficients are set to zero for each of them. This
amounts to selecting different basis functions in each dimension. As a
result, the tendency of ℓ1-norm regularized methods to favor zero
coefficients also creates a bias towards current orientations that are
perpendicular to one or more of the axes of the coordinate system and
are physiologically meaningless.

It has recently beenpointed out, that rotational invarianceof vectorial
quantities can bemaintained by choosing a so-calledℓ1, 2-norm penalty,
which minimizes the (sparsity inducing) ℓ1-norm of vector amplitudes
(Ding and He, 2008; Haufe et al., 2008; Ou et al., 2008; Bolstad et al.,
2009). The difference between “standard”ℓ1-normand theℓ1, 2-norm is
that the former leads to entry-wise sparsity, while the latter sets whole
rows of C jointly to zero. Importantly the chosen coordinate system does
not influencewhether or not a row is set to zero by theℓ1, 2-norm,while
it does affect the pruning of entries by the ℓ1-norm. For a geometrical
explanation of whyℓ1- andℓ1,2-norm penalties lead to sparsity at all we
refer to Tibshirani (1996) and Yuan and Lin (2006).

The ℓ1, 2-norm regularizer is defined by

R Cð Þ = ∥C∥1;2 = ∑
L

l=1
∥cl∥2 : ð5Þ



Fig. 1. Examples of Gaussian basis functions bn;s xð Þ with spatial standard deviations
σ1=0.5 cm, σ3=1 cm and σ5=1.5 cm.
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Technically, R(C) is rotationally invariant due to the use of the
ℓ2-norm

∥c∥2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

d=1
c2d

s
ð6Þ

in output space, which does not change under rotation. Let Q∈C3×3,
Q†Q= I be a unitary matrix, where Q† is the adjoint of Q. Now

∑
L

l=1
∥Qcl∥2 = ∑

L

l=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr c†l Q

†Qcl
� �r

= ∑
L

l=1
∥cl∥2 : ð7Þ

Note that the class of unitary matrices covers both rotations
Q∈R3×3,Q⊤Q= I as well as phase shifts Q=exp(iϕ)I(3×3) as special
cases.

Dictionary
The idea of enforcing smoothness and focality in the inverse solution

is to avoid the scattering of activity found for many purely focal
approaches, and at the same time to maintain their high spatial
resolution and the associated ability to distinguish multiple sources. In
other words, we are looking for source estimates with spatially
constricted but smooth active regions. In Haufe et al. (2008) a
combination of two penalties was used to achieve that effect. Here, it
is addressed by designing an appropriate basis function dictionary. We
consider an expansion into Gaussians. These are smooth, but also well
localized due to exponentially decaying tails. Thanks to the latter, sparse
combinations of Gaussian bases give rise to good spatial separation of
sources. Using a redundant dictionary containing Gaussians of different
scales, we further expect that sources with arbitrary shape can be
reconstructed with few basis elements.

Formally, we consider spherical Gaussians

bn;s xð Þ =
ffiffiffiffiffiffi
2π

p
σs

� �−3
exp −1

2 ‖ x−xn2
2σ−2

s ‖
� �

ð8Þ

being centered at nodes xn;n = 1;…;N and having S different spatial
standard deviations σs,s=1,…,S (see Fig. 1 for examples).

Normalization
The proposed ℓ1, 2-norm based regularization aims at selecting the

smallest possible number of basis fields necessary to explain the
measurement. This approach, however, is heuristic, since not the
number of nonzero coefficient vectors, but their magnitudes enter the
cost function. It is therefore important to normalize the basis
functions in order not to prefer some of them a-priori. Let Bs be the
N×N matrix containing all basis function evaluations with standard
deviation σs. The large matrix

B =
B1

∥vec B1ð Þ∥1
;…;

BS

∥vec BSð Þ∥1

� �
∈ℝN×SN ð9Þ

is constructed using normalized Bs. By this means, no length scale is
preferred a-priori.

An estimation bias is also introduced by the location of the sources.
Due to volume conduction, the signal captured by the sensors is much
stronger for superficial sources compared to deep sources. In Pascual-
Marqui (2002) the variance estimate Ŝ = F

⊤
F F

⊤� �−1
F∈ℝ3N×3N is

derived for the (least-squares) estimated sources, where F = HF
and H= I(M×M)−1(M)1(M)

⊤ /M is the common-average reference
transform. We found that Ŝ can be used for alleviating the location
bias (Haufe et al., 2008). This can be done by penalizing activity at
locations with high variance. Let Wn∈ℝ3×3 denote the inverse of the
matrix square root of the n-th 3×3 blockdiagonal part of Ŝ, we define
the depth-compensation matrix

W =
W1 … 0
⋮ ⋱ ⋮
0 … WN

0
@

1
A∈ℝ3N×3N

: ð10Þ

Estimation
Using the definitions from earlier the coefficients are sought which

provide a defined compromise between sparsity and model error, i.e.

Ĉ = argmin
C

R Cð Þ + λL Cð Þ ð11Þ

where L Cð Þ = ∥z−Γvec Cð Þ∥22 is the quadratic loss function, Γ≡FW
(B⊗ I(3×3))∈ℝM×3SN and λ is a positive constant controlling the
tradeoff between loss function and regularization. Minimizing the
weighted sum of two objectives is a measure to achieve a compromise
between the two (cf. Zou and Hastie, 2005; Haufe et al., 2008; Vega-
Hernández et al., 2008).

Given the coefficients the estimated current density at node xn is
defined by

ŷn = Wn ∑
SN

l=1
ĉlbl xnð Þ: ð12Þ

This solution has been termed sparse basis field expansion (S-FLEX)
solution in a precursory conference paper (Haufe et al., 2009).

Comparison to Focal Vectorfield Reconstruction
Note that Eq. (11) has a structural similarity to our previous

approach FVR (Haufe et al., 2008). The FVR solution is obtained by
setting B= I(N×N) (i.e., the coefficients ci are equal to the sources si)
and adding the additional regularizer α∑N

n = 1∥tn∥2, where T =
t1;…; tNð Þ⊤ = DW−1C and D is a discrete spatial second derivative
(Laplacian) operator. The additional term in FVR effectively enforces
spatial smoothness or continuity of the current density by rewarding
sparse second derivatives. Hence, FVR and our current approach
achieve a very similar effect using contrary strategies (namely,
sparsity before and after linear transformation). However, it is not
possible to transform one problem into the form of the other, since B
and D are generally not invertible. As we will see later (Optimization
section), this prevents our hereby proposed optimization algorithm to
be applied to FVR.
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Extension to multiple measurements
While Eq. (12) considers only single field patterns, we would now

like to extend S-FLEX to the localization of multiple measurements.
The goal is to estimate T current densities yn tð Þ based on T patterns
z tð Þ. Let Z = z 1ð Þ;…; z Tð Þð Þ∈ℂM×T and cl tð Þ∈ℂ3 be the coefficient
vector describing the contribution of the l-th basis field to the t-th
pattern. Defining c̃l = cl 1ð Þ⊤;…; cl Tð Þ⊤� �⊤∈ℝ3T and

C̃ =
c1 1ð Þ … c1 Tð Þ

⋮ ⋱ ⋮
cL 1ð Þ … cL Tð Þ

0
@

1
A∈ℝ3L×T

; ð13Þ

we propose to estimate

ˆ̃C = argmin
C̃

R̃ C̃
� �

+ λL̃ C̃
� �

ð14Þ

with R̃ C̃
� �

= ∑L
l = 1 ‖ c̃l‖ 2 and L̃ C̃

� �
= ‖ vec Z−Γ˜C

� �
‖ 2
2, which is

equivalent to Eq. (11) for T=1. However, for TN1 it is not equivalent
to solving T problems of type Eq. (11) separately, as in our case the 3T
coefficients belonging to a certain basis function are tied under a
common ℓ2-norm penalty and can only be pruned to zero at the same
time. Thus, the selection of basis functions which contribute
coherently to several patterns is facilitated, while at the same time
Fig. 2. Simulated current density (SIM) and reconstructions according
orientations, amplitudes and phases of the corresponding fields are
allowed to differ per pattern. Such joint (or co-) localization was
already suggested in previous work. The idea originates from
Polonsky and Zibulevsky (2004) and appears also in Malioutov et al.
(2005), Wipf and Rao (2007), Ou et al. (2008) and Bolstad et al.
(2009). Malioutov et al., Ou et al. and Bolstad et al. (2009) use the
technique for spatio-temporal source localization, where theℓ2-norm
penalty in temporal domain prevents from artificial jumps in the time
course of the estimated sources. Both studies suggest that joint
localization leads to a better noise suppression compared to the
single-timepoint estimator. A similar effect has been reported in a
pure regression setting, where joint regularization of Fourier
coefficients lead to improved BCI classification rates (van Gerven
et al., 2009).
Optimization
Eqs. (11) and (14) form convex problems, composed of a quadratic

loss function and a convex nondifferentiable regularizer. These
problems share similarities with the problems discussed in Polonsky
and Zibulevsky (2004); Haufe et al. (2008); Malioutov et al. (2005);
Ou et al. (2008); Ding and He (2008); Wipf and Nagarajan (2009) and
Bolstad et al. (2009). In the majority of these papers, the cost function
is reformulated as an instance of second-order cone programming
to LORETA, L1, FVR and S-FLEX. Color encodes dipole magnitude.

image of Fig.�2
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(SOCP) (Lobo et al., 1998). The proposed interior-point-based SOCP
solvers are, however, only applicable to small- and medium-sized
problems not exceeding several ten thousands of variables. For this
reason, some authors perform a dimensionality reduction step in
order to reduce the number of variables and/or observations
(Malioutov et al., 2005; Ou et al., 2008).

Here, we make use of a more recent advance in numerical
optimization that enables us to solve S-FLEX instances involving
millions of model parameters and thousands of observations. The
proposed algorithm is based on deriving the Fenchel dual of the
optimization problem and applying the augmented Lagrangian
technique. It has thus been termed Dual Augmented Lagrangian
(DAL, see Tomioka and Sugiyama (2009)). Usage of augmented
Lagrangians was also proposed by Polonsky and Zibulevsky (2004)
who apply the technique to the primal (original) problem. However, it
is demonstrated in Tomioka and Sugiyama (2009) that a dual
formulation is more efficient when the number of unknown variables
is much larger than the number of observations, which is the typical
scenario in distributed source modeling.

We use the reference implementation of DAL, which is provided as
open source software (Tomioka, 2009). Note that DAL is not only
suitable for computing S-FLEX solutions, but could also be applied to
solve large instances of the problem arising in Polonsky and
Zibulevsky (2004), Ou et al. (2008) and Ding and He (2008).
Unfortunately, sparsity of linearly transformed variables is not
efficiently handled by DAL, preventing our previous approach FVR
to benefit from DAL. For this reason, we believe, that our current
formulation is more suitable for achieving spatial exibility in large-
scale source localization tasks.

Simulations

Assessing single-measurement localization performance
Validation of methods for inverse reconstruction is generally

difficult due to the lack of a “ground truth”. The measurements z do
not provide such a truth, as the main goal here is not to find a
functional representation for the EEG, but for the underlying current
density y xð Þ, which is unknown. Therefore, a standard way of
evaluating inverse methods is to assess their ability to reconstruct
known functions. This is done here by reconstructing simulated
current sources, which are generated as follows. A realistic head
model is obtained from high-resolution MRI (magnetic resonance
imaging) slices of a human head (Holmes et al., 1998). Inside the
brain, N=2142 dipole locations xn;n = 1;…;N are defined according
to a cubic grid of 10 mm inter-dipole distance. Corresponding current
vectors yn are sampled from a multivariate standard normal
distribution. The resulting function xn; ynð Þ is spatially smoothed
using a Gaussian lowpass filter with standard deviation 2.5 cm.
Finally, denoting by pk the k-th percentile of the current lengths
∥yn∥2;n = 1;…;N, each yn is scaled to have lengthmax ∥yn∥2−p90;0ð Þ,
i.e., only the 10% largest currents are retained. Source distributions
obtained by this procedure usually feature two-three activity patches
(sources) with small to medium extent and smoothly varying
magnitude and orientation (see Fig. 2 for an example). The lead
field F∈ℝM×2142 ⋅3 is constructed according to Nolte and Dassios
(2005) taking into account the realistic head geometry.

The localization is carried out using the proposed sparse basis field
expansion (S-FLEX) approach, the commonly used approaches of
LORETA (Pascual-Marqui et al., 1994), minimum ℓ1-norm estimate
(denoted as L1 in the following) (Matsuura and Okabe, 1995), and our
recently proposed Focal Vectorfield Reconstruction (FVR) technique
(Haufe et al., 2008). Note that these methods cover the full spectrum
from smooth spread-out solutions (LORETA) to sparse solutions (L1).
We use a variant of L1, in which the original depth-compensation
approach is replaced by the approach outlined in the Normalization
section. As the data was simulated without noise, perfect reconstruc-
tion is required for all methods. For S-FLEX, basis functions with three
different standard deviations σ1=0.5cm, σ2=1cm, σ3=1.5cm are
used. The tradeoff parameter α for FVR is chosen as suggested in Haufe
et al. (2008).

Five current densities are simulated and respective pseudo EEG
measurements for 118 channels are computed. For eachmeasurement
andmethod a 5×5-fold cross-validation is conducted. That is, the EEG
electrodes are randomly partitioned into five groups of approximately
equal size. Each union of four electrode groups gives rise to a “training
set”, while the remaining channel groups are called “test sets”. The
procedure is carried out five times with different randomizations,
yielding 25 training sets with corresponding test sets. Inverse
reconstructions are carried out based on the “training sets”. In each
of the 25 cross-validation runs, two criteria are evaluated. Most
importantly the reconstruction error, defined as

REC = ‖ vec Yð Þ
‖ vec Yð Þ‖ 2

−
vec Ŷ

tr� �
‖ vec Ŷ

tr� �
‖ 2

‖
2

; ð15Þ

is considered, where Ŷ
tr

are the vector field outputs at nodes
xn;n = 1;…;N estimated using only the training set. Apart from the
pointwise reconstruction, we also consider the earth-mover's distance
(EMD) between true and estimated current density, which measures
the effort needed to transform one density into the other. The EMD is
described in Rubner et al. (2000) and has been introduced in the
context of EEG/MEG inverse solution evaluation in Haufe et al. (2008).

A third quantity of interest is the generalization error, i.e., the error
in predicting the activity at those channels in the test set from the
sources that are estimated from the training set. This is defined as

GEN = ‖ zte−Ftevec Ŷ
tr� �

‖
2

2
; ð16Þ

where zte and Fte are the parts of z and F belonging to the test set.

Effect of joint localization
To illustrate the effect of co-localization, we performed the

following experiment. A single dipolar source is placed in a cortical
region of the brain and the resulting field pattern is computed. Ten
different phase-shifted versions of the pattern are constructed by
multiplication with a random unit-length complex number exp(iϕ).
Each resulting pattern is superimposed by equal amounts of
measurement and biological noise. Measurement noise is drawn
from a Gaussian distribution with identity covariance matrix.
Biological noise is correlated noise stemming from noisy brain
sources. This brain noise is generated for each location in the brain
using a Gaussian distribution with identity covariance matrix. The
leadfield is used to project the noisy sources to the EEG. The signal-to-
noise ratio is set to 1. Note that in this scenario, the SNR cannot be
increased by averaging, since both signal and noise are zero-mean
complex quantities. Source localization is carried out using both the
single- and multiple-measurement variants of S-FLEX, where the
regularization constant is set to match the exact SNR. The source
estimates of all patterns are averaged to yield the estimated dipole
amplitude per voxel. The obtained source amplitudemap is compared
with the true map, in which only one dipole is active, using the earth
mover's distance. The experiment is repeated 100 times.

Localization of sensorimotor rhythms

We will now consider real data from experiments recently
conducted within the Berlin Brain–Computer Interface (B)BCI project
(Blankertz et al., 2010; see also Müller et al., 2008; Blankertz et al.,
2007; Blankertz et al., 2008a,b; Tomioka and Müller, 2010; Blankertz
et al. in press). These experiments originally had the purpose of



Table 1
Ability of LORETA, L1, FVR and S-FLEX to recover simulated current densities in terms of
reconstruction error (REC) and Earth-Mover's Distance (EMD); and generalization
performance (GEN) with respect to the EEG measurements.

REC GEN EMD

LORETA 1.00±0.01 2.87±0.78 2.43±0.03
L1 1.21±0.01 1.86±0.57 1.91±0.04
FVR 0.95±0.02 1.21±1.00 0.86±0.02
S-FLEX 0.71±0.04 0.92±0.28 0.75±0.02

Fig. 3. Comparison of individual (SINGLE) and joint localization of ten simulated noisy
measurements. The location of the true simulated source is indicated by a red cross-
hair.

Table 2
Maximally discriminating frequency-bands, time-intervals and optimal class combina-
tions for nine subjects.

Subject Band Interval Classes

js 10.0–13.0 Hz 1000–4250 ms Left/right
kp 8.0–12.5 Hz 1000–4500 ms Left/right
ks 8.5–12.5 Hz 770–3950 ms Left/right
kg 8.5–13.5 Hz 830–3440 ms Left/foot
jj 8.5–13.5 Hz 1170–3970 ms Left/foot
jl 9.5–13.5 Hz 1150–4160 ms Left/foot
jy 7.5–11.5 Hz 1240–4070 ms Left/foot
kc 9.5–13.5 Hz 1270–4000 ms Left/foot
kd 9.5–13.5 Hz 1340–4110 ms Left/foot
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screening subjects with respect to BCI aptitude. Note that the
presented BCI data mainly serves as a testbed to explain the S-FLEX
technique on non-simulated EEG data.

Brain–computer interfacing aims at providing paralyzed patients a
communication device that “reads thoughts” and thereby obviates the
need of using the usual motor pathway. A particularly successful
approach to BCI is motor imagery, i.e., a system is controlled by a user
deliberately switching between movement imaginations of certain
limbs. It is known that for most people the associated contralateral
sensorimotor cortex becomes active already during imagination of a
movement. This leads to attenuation of local sensorimotor rhythms
(predominantly in the μ-range) detectable by EEG/MEG; a phenom-
enon which is also known as Event-Related Desynchronization (ERD)
(Pfurtscheller and Lopes da Silva, 1999).

Experimental setup
Forty healthy BCI-naive subjects (33.6±13.1 years old, 22 female)

participated in the study. During the experiment, they sat in a
comfortable chair with arms and legs resting conveniently. EEG was
acquired from 119 Ag/AgCl electrodes (reference at nasion). In a
calibration session, arrows pointing left, right or down were
presented on a screen and had to be responded by five seconds of
left hand, right hand or foot motor imagery, respectively. Each arrow
was presented 75 times. Using heuristics, well-discriminating
contiguous post-stimulus time-intervals and frequency bands were
identified (Blankertz et al., 2008b). Furthermore, a fixed number of
spatial filters was computed for each subject. The log-bandpower
of the temporally and spatially filtered EEG data was used to train
regularized linear discriminant analysis (RLDA) classifiers (Blankertz
et al. in press) discriminating between each pair of classes of motor
imagery. The two classes showing best cross-validated separability on
the calibration set were selected for use in a subsequent online
session.

The locations of μ-ERD generators in hand- and foot areas of the
sensorimotor cortex are well known from the literature (e.g.,
Golaszewski et al., 2002; Leonardo et al., 1995; Porro et al., 1996;
Ciccarelli et al., 2005). These results obtained by functional Magnetic
Resonance Imaging (fMRI) serve as a hypothesis here to be confirmed
by EEG source localization. Since reliable source localization can only
be expected from clean EEG signals, we restrict ourselves to cases in
which EEG traces are clearly separable. That is, for each subject we are
only interested in the two motor imagery classes showing best
classifiability, and consider only those subjects who achieved very
good BCI performance (error rates below 10%) in both the calibration
and the online session. Ten subjects fell into that category. For nine of
them, discriminability was found in the μ-band, as expected. A tenth
subject, that achieved best BCI control using a broad band covering β-
and γ-range, was excluded from the present investigation.

Single-trial localization of Fourier coefficients
In Yuan et al. (2008), Fourier-transformed single-trial EEG

acquired during left/right hand motor imagery was subjected to a
cortically-constrained version of the weighted minimum ℓ2-norm
source estimator (WMNE). A subsequent voxel-wise statistical test
revealed maximal source discrimination between classes in the
sensorimotor cortex. Here we pursue a similar approach. To this
end, S-FLEX is applied to complex Fourier coefficients, which are
calculated for each trial in the preselected band and pre-stimulus time
interval by means of an FFT. Within the selected frequency band, five
equidistantly-sampled Fourier coefficients are taken for each subject,
regardless of the length of the selected time interval. Localization is
conducted in the standard headmodel using a source grid of N=6249
dipoles (7 mm inter-dipole distance). We consider basis functions
with widths σ1=0.75cm, σ2=1cm, σ3=1.25cm and σ4=1.5cm.
The regularization parameter needed to cope with noise influence is
selected by means of five-fold cross-validation. That is, the parameter
is chosen that minimizes the generalization error GEN on average. A
multiple-measurement variant of S-FLEX is employed, where all
Fourier-coefficient patterns of a trial are co-localized.

Note that the optimization problems to be solved in this joint
localization setting are truly large-scale. Due to the comprehensive-
ness of the basis function dictionary used here (L=24996 Gaussians
with N=6249 varying center positions and 4 different widths), the
localization of a single EEG pattern (M≈80 electrodes) already
amounts to fitting 3⋅24996=74988 model parameters (recall that
three coefficients exist per basis function, one for each of the three
spatial dimensions of the current density). When five Fourier are co-
localized, the number of observations and variables effectively
increases by a factor of ten, due to real and imaginary parts. Using
DAL, however, the computational demands for such models are still
moderate. Solving the optimization problem for a single choice of the
regularization constant typically takes around 3 min on a modern
laptop computer (1.58 GHz dual-core CPU, 2 GB RAM). Note that this
is roughly the time required by our previously suggested method FVR
to localize a single EEG pattern in a coarse source grid with 1 cm inter-
dipole distance.

http://dx.doi.org/10.1016/j.neuroimage.2010.06.048
http://dx.doi.org/10.1016/j.neuroimage.2010.06.048
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Fig. 4. S-FLEX source-space discriminability between best (discriminating) conditions for nine subjects. Source estimates are obtained from single-trial localization of Fourier
coefficients. For subjects js, kp and ks the optimal conditions are left and right hand imagery, while for all other subjects the optimal combination is left hand vs. foot imagery.
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Fig. 5. S-FLEX source-space discriminability between conditions obtained from single-trial localization of Fourier coefficients for subjects kp and jj, when the L-curve criterion is used
for model selection.
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Results

Simulations

Fig. 2 shows a simulated current density along with reconstruc-
tions according to LORETA, L1, FVR and S-FLEX. From the Figure it is
apparent, that LORETA and L1 do not approximate the true current
density well. While the LORETA solution is rather blurry, not reflecting
the shape of the true source, the L1 solution exhibits a number of
spikes, which could be misinterpreted as different sources. The
estimates of FVR and S-FLEX approximately recover the shape of the
sources.

As quantified in Table 1, S-FLEX generalizes slightly better than its
peers. More importantly, S-FLEX outperforms the other methods in
terms of reconstruction accuracy and earth-movers distance. Joint- as
compared to single-pattern localization leads to a significantly better
reconstruction of a single dipole, as indicated by a lower earthmover's
distance (3.9±0.1 as compared to 4.6±0.1). An example is shown in
Fig. 3.

While both estimated source distributions here peak similarly
close to the true source location (indicated by a red cross-hair), the
multiple-measurement approach has the advantage of being less
spread-out. This illustrates that joint localization effectively removes
the noise-induced spatial instability seen in single-trial estimates.

Localization of sensorimotor rhythms

The preprocessing steps performed prior to source localization are
subject-specific, i.e., include filtering in individual frequency bands,
the selection of individual time-intervals and class combinations, and
so on. For this reason, calculation of grand-averages is not easily
possible, and results are presented here for single subjects. Table 2
lists the heuristically-chosen frequency-bands, time-intervals and the
optimal class combinations for all subjects.

Source space discriminability maps obtained from localizing
single-trial Fourier patterns are presented in Fig. 4. These plots depict
how much class-specific the brain activity during motor imagery is at
each voxel. We use the signed r2-value which is normalized by the
average Band Amplitude (BA) as a discriminability index. Here, the
Band Amplitude at a certain voxel is defined as the ℓ2-norm of the
estimated vector of Fourier coefficients in the heuristically selected
frequency band at that voxel, while the r2-value is defined as the
signed squared Pearson correlation coefficient between class label and
Band Amplitude.

Subjects js, kp and ks achieved best BCI control by performing left
vs. right hand motor imagery. This is reflected by the localization of
the correspondingmental activity revealing an opposing contralateral
activation of both hand areas. The other six subjects utilized foot
imagery. In the left hand condition, all these subjects exhibit
desynchronization of both hand areas simultaneously. This suggests
that the foot condition often serves as a pseudo class, and some
subjects may effectively achieve one-dimensional BCI control utilizing
only the presence or absence of (left and right) hand-related ERD.

Discussion

Suitable priors for source localization

Computation of distributed EEG (or MEG) inverses heavily relies
on regularization, since the physical model alone does not uniquely
determine the sources. Within the last years the field has seen
tremendous progress, in that the proposed regularization penalties
more and more represent neurophysiologically meaningful prior
knowledge. One important step has been the insight that the spatial
spread of the sources should be controlled for, and ideally be tuned
automatically using cross-validation or basis field selection. A second
line of research was devoted to investigating howmutual information
can be exploited, if several related field maps are to be localized
jointly. In many cases, such as here, ℓ1, 2-norm based grouping is
suggested, which amounts to assuming that the sets of active brain
sites have substantial overlap across EEG/MEG patterns. This
assumption is certainly fulfilled for repeated measurements recorded
under the same experimental condition, and will approximately hold
also for narrow-band signals. The validity of this model for wide-band
and time-series data, however, remains unclear. In some cases, the
known ordering of patterns might allow further exploitation, e.g., if
smoothness (rather than concurrence) of sources is enforced in
temporal or spectral directions.

Choice of the regularization parameter

The choice of the regularization parameter, which controls how
“complicated” source distributions are allowed to be, turns out to be a
crucial point in our analyses. We observe that reasonable results are
obtained using the cross-validated generalization error as a model
selection criterion. This criterion can be efficiently computed for ℓ2-
norm regularized methods such as LORETA. Interestingly, using cross-
validation for sparse methods such as L1 and S-FLEX the “optimal”
model error (loss) is systematically estimated to be smaller than for
LORETA, leading to seemingly too complex sources. For this and for
efficiency reasons the optimal model error as estimated by LORETA is
used as the regularization criterion throughout the study.

Another model selection criterion being widely used in the field of
inverse problems consists in finding the corner of the L-curve, which is
a log–log plot of the model error vs. the regularization term (Hansen,
1992). In our experiments, this criterion shows a tendency to
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regularize rather strongly, i.e. favor very simple sources. These often
turn out to be deeper andmore central. This can be seen in Fig. 5,which
is to be comparedwith the corresponding panels of Fig. 4. In summary,
both cross-validation and the L-curve method may fail under some
conditions. It is a remaining challenge to derive noise estimates for
oscillatory data, which could give rise to better model selection.

Conclusion

We contribute a novel methodology for obtaining sparse decom-
positions of vector fields especially tailored to EEG/MEG current
density reconstruction. Furthermore, a well-suited efficient optimi-
zation scheme is suggested, that allows genuine large-scale localiza-
tion. We have validated our method on simulated data and
furthermore used high quality data from BCI experiments as testbed.
When applied to EEG data from motor imagery BCI sessions, the
signals recorded in different conditions showed highly separable
source activation in the sensorimotor cortex, in agreement with the
literature. This raises the question how source reconstruction
methods can be used to improve BCI classification.
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