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1.1 Introduction

Low-rank decomposition of tensors (multi-way arrays) naturally arises in
many application areas, including signal processing, neuroimaging, bioinfor-
matics, recommender systems and other relational data analysis [29, 35, 20].

This chapter reviews convex-optimization-based algorithms for . There are
several reasons to look into convex optimization for tensor decomposition.
First, it allows us to prove worst-case-performance guarantees. Although we
might be able to give a performance guarantee for an estimator based on a
non-convex optimization (see e.g., [43]), the practical relevance of the bound
would be limited if we cannot obtain the optimum efficiently. Second, the
convex methods allow us to side-step the tensor rank selection problem; in
practice misspecification of tensor rank can significantly deteriorate the per-
formance, whereas choosing a continuous regularization parameter can be con-
sidered an easier task. Third, it allows us to use various efficient techniques
developed in the mathematical programming communities, such as proximity
operation, alternating direction method of multipliers (ADMM), and duality
gap monitoring that enable us to apply these algorithms to a variety of set-
tings reliably. The norms we propose can be used for both denoising of a fully
observed noisy tensor and reconstruction of a low-rank tensor from incom-
plete measurements. Of course there are limitations to what we can achieve
with convex optimization, which we will discuss in Section 1.6. Nevertheless
we hope that the methods we discuss here serve to connect tensor decom-
position with statistics and (convex) optimization, which have been largely
disconnected until recently, and contribute to the better understanding of the
hardness and challenges of this area.

This chapter is structured as follows: in the next section, we introduce
different notions of tensor ranks and present two norms that induce low-rank
tensors, namely the overlapped Schatten 1-norm and latent Schatten 1-norm.
In Section 1.3, we present denoising and recovery bounds for the two norms.
The proofs of the theorems can be found in original papers [54, 53]. In Sec-
tion 1.4, we propose optimization algorithms for the two norms based on
primal and dual ADMM, respectively. Although ADMM has become a stan-
dard practice these days, our implementation allows us to deal with the noisy
case and the exact case in the same framework (no need for continuation). We
also discuss the choice of the penalty parameter η. Section 1.5 consists of some
simple demonstrations of the implication of the theorems. Full quantitative
evaluation of the bounds can be found in original papers [54, 53]. We discuss
various extensions and related work in Section 1.6. We conclude this chapter
with possible future directions.
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1.2 Ranks and norms

Let W ∈ Rn1×n2×···×nK be a K-way tensor. We denote the total number
of entries in W by N =

∏K
k=1 nk.

1.2.1 Rank and multilinear rank

A tensor W is rank one if it can be expressed as an outer product of K
vectors as

W = u(1) ◦ u(2) ◦ · · · ◦ u(K),

which can be written element-wise as follows:

Wi1i2···iK = u
(1)
i1

u
(2)
i2

· · ·u(K)
iK

, (1 ≤ ik ≤ nk, k = 1, . . . ,K).

It is easy to verify that a tensor is rank one.
The W is the smallest number r such that W can be expressed as the sum

of r rank-one tensors as follows:

W =
r∑

j=1

u
(1)
j ◦ u(2)

j ◦ · · · ◦ u(K)
j . (1.1)

The above decomposition is known as the [22]. It is known that finding the
rank r or computing the best rank r approximation (even for r = 1) is an NP
hard problem [23, 21].

The multilinear rank of W is the K tuple (r1, . . . , rK) such that rk is the
dimension of the space spanned by the mode-k fibers [13, 29]; here mode-k
fibers are the nk dimensional vectors obtained by fixing all but the kth index.
If W admits decomposition (1.1), rk is at most r, in which case the multilinear
rank of W is at most (r, . . . , r).

In contrast to the rank, the (r1, . . . , rK) can be computed efficiently. To
this end, it is convenient to define the mode-k unfolding operation. The mode-
k W (k) is a nk ×N/nk matrix obtained by concatenating the mode-k fibers
along columns. Then rk is the matrix rank of the mode-k unfolding W (k).

The notion of multilinear rank is connected to another decomposition
known as the [56] or the higher-order SVD [13, 14]

W = C ×1 U1 ×2 U2 · · · ×K UK , (1.2)

where ×k denotes the mode-k product [29].
Computation of decompositions (1.1) and (1.2) from large noisy tensor

with possibly missing entries is a challenging task. Alternating least squares
(ALS) [11] and higher-order orthogonal iteration (HOOI) [14] are well known
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and many extensions of them are proposed [29]. However, they typically come
with no theoretical guarantee either about global optimality of the obtained
solution or the statistical performance of the estimator. Kannan and Vempala
(see Chapter 8) [27] proposed a sampling based algorithm with a performance
bound, which requires knowledge of the Frobenius norms of the slices.

1.2.2 Convex relaxations

Recently, motivated by the success of the (also known as the and ) for
the recovery of low-rank matrices [16, 50, 42, 10, 43, 38], several authors have
proposed norms that induce low-rank tensors.

These approaches solve convex problems of the following form:

minimize
W

L(W) + λ
∣∣∣∣∣∣W∣∣∣∣∣∣

⋆
, (1.3)

where L : Rn1×···×nK → R is a convex loss function that measures how well
W fits the data,

∣∣∣∣∣∣W∣∣∣∣∣∣
⋆
is a norm (we discuss in detail below), and λ > 0 is a

regularization parameter.
For example, let’s assume that the measurements y = (yi)

M
i=1 are generated

as

yi = ⟨Xi,W∗⟩+ ϵi, (1.4)

where ⟨X ,W⟩ denotes the inner product between two tensors viewed as vec-
tors in RN ; more precisely, ⟨X ,W⟩ =

∑
i1,...,iK

Xi1...iKWi1...iK . Then the loss
function can be defined as the sum of squared residuals

L(W) =
1

2
∥y − X(W)∥22,

where X(W) := (⟨Xi,W⟩)Mi=1.
The minimization problem (1.3) minimizes the loss function keeping also

the norm small. Difference from the conventional optimization based ap-
proaches for tensor decomposition is that instead of constraining the (mul-
tilinear)rank of the decomposition, it only constrains the complexity of the
solution measured by a particular norm.

In the case of matrices, it is well known that the Schatten 1-norm

∥W ∥S1 =

r∑
j=1

σj(W ),

where σj(W ) is the jth singular value of W and r is the rank of W , promotes
the solution of (1.3) to be low-rank; see e.g., [15]. Intuitively, this can be
understood analogous to the sparsity inducing property of the ℓ1 norm; it
promotes the spectrum of W to be sparse, i.e., a spectral version of lasso [51].
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It is known that the Schatten 1-norm of a rank r matrix W can be related
to its Frobenius norm as follows [50]:

∥W ∥S1 ≤
√
r∥W ∥F .

Thus a low-rank matrix has a small Schatten 1-norm relative to its Frobenius
norm.

The following norm has been proposed by several authors [47, 18, 33, 52]:

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

=
K∑

k=1

∥W (k)∥S1 . (1.5)

We call the norm (1.5) . Intuitively, it penalizes the Schatten 1-norms of the
K unfoldings, and minimizing the norm promotes W to have low-multilinear
rank. In fact, it is easy to show (see [54]) the inequality

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

≤
K∑

k=1

√
rk
∣∣∣∣∣∣W∣∣∣∣∣∣

F
, (1.6)

where
∣∣∣∣∣∣W∣∣∣∣∣∣

F
is the Frobenius norm

∣∣∣∣∣∣W∣∣∣∣∣∣
F
=
√
⟨W,W⟩. Thus, tensors that

have low multilinear rank (in average) have low overlapped Schatten 1-norm
relative to the Frobenius norm.

Another norm proposed in [52, 53] is the

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

= inf
(W(1)+···+W(K))=W

K∑
k=1

∥W (k)
(k)∥S1 . (1.7)

Here the norm is defined as the infimum over all tuple of K tensors that sums
to the original tensor W. It is also easy to relate the latent Schatten 1-norm
to the multilinear rank of W. In [53], it was shown that∣∣∣∣∣∣W∣∣∣∣∣∣

S1/1
≤ min

k

√
rk
∣∣∣∣∣∣W∣∣∣∣∣∣

F
. (1.8)

Note that the sum in inequality (1.6) is replaced by the minimum in inequality
(1.8). Therefore, the latent Schatten 1-norm is small when the minimummode-
k rank of W is small.

1.3 Statistical Guarantees

In this section we present statistical performance guarantee for the esti-
mators defined by the overlapped and latent Schatten 1-norms.
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1.3.1 Denoising bounds

The first two theorems concern the denoising performance of the two
norms.

Suppose that the observation Y ∈ Rn1×···×nK is obtained as follows:

Y = W∗ + E ,

where W∗ is the true low-rank tensor with multilinear rank (r1, . . . , rK) and
E ∈ Rn1×···×nK is the noise tensor whose entries are independently identically
distributed zero-mean Gaussian random variables with variance σ2.

Define the estimator Ŵ by

Ŵ = argmin
W

(
1

2

∣∣∣∣∣∣Y −W
∣∣∣∣∣∣2
F
+ λ

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

)
, (1.9)

where λ > 0 is a regularization parameter.
Then we have the following denoising performance guarantee.

Theorem 1 (Denoising via the overlapped Schatten 1-norm [54]) There
are universal constants ci > 0 (i = 0, 1) such that any minimizer of (1.9) with

λ = c0
σ
K

∑K
k=1(

√
N/nk +

√
nk) satisfies the following bound

1

N

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ c1σ

2

(
1

K

K∑
k=1

(
√
1/nk +

√
nk/N)

)2(
1

K

K∑
k=1

√
rk

)2

.

with probability at least 1− exp(−( 1
K

∑K
k=1(

√
N/nk +

√
nk))

2).

In particular, if nk = n, the above bound implies the following:

1

N

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ Op

(
σ2 ∥r∥1/2

n

)
, (1.10)

where ∥r∥1/2 := ( 1
K

∑K
k=1

√
rk)

2.
In order to state a bound for the latent Schatten 1-norm, we need addi-

tional assumptions. Suppose the following observation model

Y = W∗ + E =
K∑

k=1

W∗(k) + E ,

where W∗ =
∑K

k=1 W∗(k) is the true tensor composed of factors W∗(k) that

each are low-rank in the corresponding mode, i.e., rank(W
∗(k)
(k) ) = r̄k. Note

that generally r̄k is different from the mode-k rank of W∗ denoted by rk.
The entries of the noise tensor E are distributed according to the Gaussian
distribution N (0, σ2) as above. In addition, we assume that the spectral norm
of a factor W∗(k) is bounded when unfolded at a different mode as follows:

∥W∗(k)
(k′) ∥S∞ ≤ α

K

√
N/nk′ (k ̸= k′). (1.11)
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In other words, we assume that the spectral norm of the kth factor unfolded at
the k′th mode is comparable to that of a random matrix for k′ ̸= k; note that
the spectral norm of a random m×n matrix whose entries are independently
distributed centered random variables with finite fourth moment scales as
O(

√
m+

√
n) [57]. This means that we want the kth factor W(k) to look only

low-rank in the kth mode as the spectral norm of a low-rank matrix would be
larger than a random full rank matrix.

Now let’s consider the estimator

Ŵ = argmin
W

(
1

2

∣∣∣∣∣∣Y −W
∣∣∣∣∣∣2
F
+ λ

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

s.t. W =
K∑

k=1

W(k), ∥W (k)
(k′)∥S∞ ≤ α

K

√
N/nk′ , ∀k ̸= k′

)
.

(1.12)

The following theorem states the denoising performance of the latent
Schatten 1-norm.

Theorem 2 (Denoising via the latent Schatten 1-norm [53]) There are
universal constants ci > 0 (i = 0, 1) such that, any solution of the minimiza-
tion problem (1.12) with regularization constant λ = c0σmaxk(

√
N/nk+

√
nk)

satisfies

1

N

K∑
k=1

∣∣∣∣∣∣Ŵ(k) −W∗(k)∣∣∣∣∣∣2
F
≤ c1σ

2

(
max

k
(1/

√
nk +

√
nk/N)

)2 K∑
k=1

r̄k, (1.13)

with probability at least 1−K exp(−(maxk(
√
N/nk +

√
nk))

2). Moreover, the

total error Ŵ −W∗ can be bounded as follows:

1

N

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ c1σ

2

(
max

k
(1/

√
nk +

√
nk/N)

)2

min
k

rk, (1.14)

with the same probability as above.

In particular, if nk = n, the above bound implies the following:

1

N

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ Op

(
σ2mink rk

n

)
(1.15)

Comparing inequalities (1.10) and (1.15), we can see that the bound for the
latent approach scales by the minimum mode-k rank, whereas that for the
overlap approach scales by the average (square-root) of the mode-k ranks; see
[53] for more details.
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1.3.2 Tensor recovery guarantee

The next theorem concerns the problem of recovering a low-rank tensor
from a small number of linear measurements. Suppose that the observations
y = (yi)

M
i=1 are obtained as in (1.4) with ϵi ∼ N (0, σ2). In addition, we assume

that the entries of the observation operator X are drawn independently and
identically from standard Gaussian distribution.

Now consider the estimator

Ŵ = argmin
W

(
1

2M
∥y − X(W)∥22 + λM

∣∣∣∣∣∣W∣∣∣∣∣∣
S1/1

)
. (1.16)

The following theorem gives a bound for tensor reconstruction from a small
number of noisy measurements.

Theorem 3 (Tensor recovery with the overlapped Schatten 1-norm [54])
There are universal constants ci > 0 (i = 0, 1, 2, 3, 4) such that for a

sample size M ≥ c1(
1
K

∑K
k=1(

√
N/nk +

√
nk))

2( 1
K

∑K
k=1

√
rk)

2, any solu-

tion Ŵ of the minimization problem (1.16) with the regularization constant

λM = c0σ
(

1
K

∑K
k=1(

√
N/nk +

√
nk)
)
/
√
M satisfies the following bound:

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ c2

σ2
(

1
K

∑K
k=1(

√
nk +

√
N/nk)

)2
( 1
K

∑K
k=1

√
rk)

2

M
,

with probability at least 1− c3e
−c4M − exp(−( 1

K

∑K
k=1(

√
nk +

√
N/nk))

2).

In particular, if nk = n the above bound implies the following:

∣∣∣∣∣∣Ŵ −W∗∣∣∣∣∣∣2
F
≤ Op

(
σ2∥r∥1/2nK−1

M

)
, (1.17)

where ∥r∥1/2 := ( 1
K

∑K
k=1

√
rk)

2.
The above theorem tells us that the number of samples that we need scales

as O(∥r∥1/2nK−1). This is rather disappointing because it is only better by a
factor ∥r∥1/2/n compared to not assuming any low-rank-ness of the underlying
truth. This motivates some of the extensions we discuss in Section 1.6.

1.4 Optimization

In this section, we discuss optimization algorithms for overlapped Schatten
1-norm (1.5) and latent Schatten 1-norm (1.7) based on [17].

ADMM is a general technique that can be used whenever splitting makes
the problem easier to solve; see [8, 55].
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1.4.1 ADMM for the overlapped Schatten 1-norm regular-
ization

We reformulate the overlapped Schatten 1-norm based tensor recovery
problem as follows:

minimize
W,Z1,...,ZK

1

2λ
∥y −Xw∥22 +

K∑
k=1

∥Zk∥S1 , (1.18)

subject to P kw = zk (k = 1, . . . ,K). (1.19)

Here Zk ∈ Rnk×N/nk (k = 1, . . . ,K) are auxiliary variables and zk is the
vectorization of Zk. We also denote the vectorization of W by w and Xw =
X(W). P k denotes the mode-k unfolding operation; i.e., vec(W (k)) = P kw.
Note that the regularization parameter λ is in the denominator of the loss
term. Although dividing the objective by λ does not change the minimizer,
it keeps the regularization term from becoming negligible in the limit λ → 0;
this is useful for dealing with the noiseless case as we explain below.

The augmented Lagrangian function for optimization problem (1.18) can
be defined as

L(w, (zk)
K
k=1, (αk)

K
k=1) =

1

2λ
∥y −Xw∥22 +

K∑
k=1

∥Zk∥S1

+ η

K∑
k=1

(
αk

⊤(zk − P kw) +
1

2
∥zk − P kw∥22

)
,

where αk is the Lagrange multiplier vector corresponding to the equality
constraint zk = P kw.

The basic idea of ADMM is to minimize the augmented Lagrangian func-
tion with respect to w and (zk) while maximizing it with respect to (αk).
Following a standard derivation (see [8, 55]), we obtain the following itera-
tions (see [52] for the derivation):

wt+1 =
(
X⊤X + ληKI

)−1
(
X⊤y + λη

∑K
k=1 P k

⊤(zt
k +αt

k)
)
,

zt+1
k = prox1/η

(
P kw

t+1 −αt
k

)
(k = 1, . . . ,K),

αt+1
k = αt

k + (zt+1
k − P kw

t+1) (k = 1, . . . ,K).

Here prox1/η is the proximity operator with respect to Schatten 1-norm and
is defined as follows:

proxθ(z) = vec
(
U max(S − θ, 0)V ⊤) , (1.20)

where Z = USV ⊤ is the singular-value decomposition (SVD) of Z, z is the
vectorization of Z, and θ ≥ 0 is a nonnegative parameter.

The first step can be carried out efficiently, for example, by precomputing
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the Cholesky factorization of (X⊤X+ληKI) or linearization (see [60]). Note
that assuming M ≤ N and rank(X) = M , we can express the limit of the
first step as λ → 0 as follows:

wt+1 = X+y + (I −X+X)
1

K

K∑
k=1

P k
⊤(zt

k +αt
k),

where X+ := X⊤(XX⊤)−1 is the pseudo inverse of X. Taking the limit
λ → 0 corresponds to solving the noise-free problem

minimize
W

K∑
k=1

∥W (k)∥S1 subject to y = X(W).

Putting 1/λ in front of the loss term allows us to deal with the two problems
in the same framework.

In particular, in the case of tensor completion, X is a zero-or-one ma-
trix that has one non-zero entry in every row corresponding to the observed
position. In this case, the update can be further simplified as follows:

wt+1
i =

{
(X⊤y)i (if position i is observed),

( 1
K

∑K
k=1 P k

⊤(zt
k +αt

k))i (otherwise).

Although careful tuning of the parameter η is not essential for the conver-
gence of the above algorithm, in practice the speed of convergence can be quite
different. Here we suggest the following heuristic choice. Consider scaling the
truth W∗ and the noise ϵ by a constant c as W ′∗ = cW∗ and ϵ′ = cϵ. Using
λ′ = cλ, we get the original solution multiplied by the same constant. Now we
require that the process of optimization should also be essentially the same.
To this end, we need to scale η inversely as 1/c so that all the terms appearing
in the augmented Lagrangian function scales linearly against c. Therefore, we
choose η as η = η0/std(y) where η0 is a constant and std(y) is the standard
deviation of y.

As a stopping criterion we use the primal-dual gap; see [52] for details.

1.4.2 ADMM for latent Schatten 1-norm regularization

In this section, we present the ADMM for solving the dual of the latent
Schatten 1-norm regularized least squares regression problem:

minimize
W

1

2λ
∥y − X(

∑K

k=1
W(k))∥22 +

K∑
k=1

∥W (k)
(k)∥S1 . (1.21)

The dual problem can be written as follows:

minimize
α,Z1,...,ZK

λ

2
∥α∥22 −α⊤y +

K∑
k=1

δS∞ (Zk) ,

subject to zk = P kX
⊤α (k = 1, . . . ,K), (1.22)
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where δS∞ is the indicator function of the unit spectral norm ball, i.e.,

δS∞(Z) =

{
0 (if ∥Z∥S∞ ≤ 1),

+∞ (otherwise).

The augmented Lagrangian function can be written as follows:

Lη (α, (Zk), (W k)) =
λ

2
∥α∥22 −α⊤y +

K∑
k=1

δS∞(Zk)

+

K∑
k=1

(
wk

⊤(P kX
⊤α− zk) +

η

2
∥P kX

⊤α− zk∥22
)
,

where W k (k = 1, . . . ,K) is the Lagrange multiplier vector corresponding
to the equality constraint (1.22) and equals the mode-k unfolding of primal
variable W(k) at the optimality.

The iterations can be derived as follows (see [52] for details):
wt+1

k = proxη
(
wt

k + ηP kX
⊤αt

)
,

zt+1
k = (wt

k + ηP kX
⊤αt −wt+1

k )/η,

αt+1 = 1
λ+ηK

(
y + ηX

∑K
k=1 P k

⊤(zt+1
k −wt+1

k /η)
)
,

where proxη is the proximity operator (1.20).
We can see that the algorithm updates the dual variables ((zk) and α)

and the primal variables (wk) alternately. In particular, the update equation
for the primal variables (wk) is a popular proximal-gradient-type update. In
fact, P kX

⊤αt converges to the gradient of the loss term at the optimality.
Note that setting λ = 0 gives the correct update equations for the noiseless

case λ → 0 in (1.21).
Consideration on the scale invariance of the algorithm similar to that in

the previous subsection suggests that we should scale η linearly as the scale
of y; thus we set η = η0std(y).

1.5 Experiments

1.5.1 Tensor denoising

We generated synthetic problems as follows. First each entry of the core
tensor C was sampled independently from standard normal distribution. Then
orthogonal factors drawn from the uniform (Haar) measure were multiplied
to each of its modes to obtain the true tensor W∗. Then the observed tensor
Y was obtained by adding zero-mean Gaussian noise with standard deviation
σ = 0.1 to each entry.
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FIGURE 1.1: Estimation of a low-rank 50×50×20 tensor of rank r × r × 3
from noisy measurements. The noise standard deviation was σ = 0.1. The
estimation errors of overlapped and latent approaches are plotted against the
rank r of the first two modes. The solid lines show the error at the fixed
regularization constant λ, which was 0.89 for the overlapped approach and
3.79 for the latent approach. The dashed lines show the minimum error over
candidates of the regularization constant λ from 0.1 to 100. In the inset, the
errors of the two approaches are plotted against the regularization constant
λ for rank r = 40 (marked with vertical gray dashed line in the outset). The
two values (0.89 and 3.79) are marked with vertical dashed lines.

The two approaches (overlap and latent Schatten 1-norms) were applied
with different values of the regularization parameter λ ranging from 0.01 to
100. The incoherence parameter α for the latent Schatten 1-norm was set to
a sufficiently large constant value so that it had no effect on the solution.

Figure 1.1 shows the result of applying the two approaches to tensors
of multilinear rank (r, r, 3) for different r. This experiment was specifically
designed to highlight the dependency of the denoising performance of the two
methods. The error of the overlapped Schatten 1-norm increases as r increases
although the rank of the third mode is constant; this is because the right-hand
side of (1.10) depends on the average (square-root) of multilinear ranks. On
the other hand, the error of the latent Schatten 1-norm stays almost constant;
this is because the minimum multilinear rank 3 is constant; see Theorem 2.
Of course, this is just one well constructed example, and we refer the readers
to [53] for more results that quantitatively validate Theorem 2.
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1.5.2 Tensor completion

A synthetic problem was generated as follows. The true tensor W∗ was
generated the same way as in the previous subsection. Then we randomly
split the entries into training and testing. No observational noise was added.

We trained overlapped and latent Schatten 1-norms using the optimization
algorithms discussed in the previous section. The operator X was defined as

X(W) = (Wisjsks)
M
s=1,

where (is, js, ks)
M
s=1 is the set of indices corresponding to the observed posi-

tions. Since there is no observational noise, we took the limit λ → 0 in the
update equations.

The result for 50 × 50 × 20 tensor of multilinear rank (7,8,9) is shown
in Figure 1.2. As baselines we included an expectation-maximization-based
Tucker decomposition algorithm in [4] with the correct rank (exact) and
20% higher rank (large). We also included matrix completion algorithm that
treated a tensor as a matrix by unfolding the tensor at a prespecified mode.
This method was implemented by instantiating only one of the auxiliary vari-
ables Z1, . . . ,ZK in the ADMM for overlapped Schatten 1-norm presented in
Section 1.4.1.

The result shows that first, treating tensor as a matrix yields a rather
disappointing result, especially when we choose mode 3. This is because the
dimensions are not balanced, which is often the case in practice, and unluckily
the mode with the smallest dimension (mode 3) has the highest rank. On the
other hand, the overlapped Schatten 1-norm can recover this tensor reliably
from about 35% of the entries without any assumption about the low-rank-ness
of the modes.

Second, the reconstruction is exact (up to optimization tolerance) above
the sufficient sampling density (35%). This can be predicted from Theorem 3
in the following way: first note that the condition for the sample size M does
not depend on the noise variance σ2; second, the right-hand side of the bound
is proportional to the noise variance σ2. Therefore, if we take the limit σ2 → 0,
the theorem predicts zero error whenever the condition for the sample size M
is satisfied. We would need a lower bound to make this claim more precise,
which may be obtained by following the work of [2].

Compared to the overlapped approach, the latent approach recovers the
true tensor exactly only around 70% observation. Although we don’t have a
theory for tensor recovery via the latent approach, it seems to suggest that the
number of samples that we need scales faster than the minimum multilinear
rank, which appeared in the right-hand side of the denoising bound (1.14).
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FIGURE 1.2: Comparison of tensor completion performance of overlapped
and latent Schatten 1-norm regularization. As baselines, Tucker decomposi-
tion with the correct rank (exact) and 20% higher rank (large), and convex
optimization based matrix completion (as a matrix) that focuses on a pre-
specified mode are included. The size of the tensor is 50 × 50 × 20 and the
true multilinear rank is (7, 8, 9). The generalization error is plotted against
the fraction of observed elements (M/N) of the underlying low-rank tensor.
Also the tolerance of optimization (10−3) is shown.

1.6 Extensions and related work

1.6.1 Balanced unfolding

For a balanced-sized K-way tensor (i.e., nk = n), CP decomposition (1.1)
or Tucker decomposition (1.2) has only linearly many parameters in n. Thus
we would expect that a reasonable estimator would decrease the error as
O(n/M). However, the scaling we see in inequality (1.17) is O(nK−1/M),
which is far larger than what we expect.

Looking at the way the bound is derived, we notice (we thank Nam H.
Nguyen for pointing this out) that the unbalancedness of the unfolding is the
cause. More specifically, the term

√
nk +

√
N/nk is the spectral norm of a

random nk × N/nk matrix with independent centered entries with bounded
fourth moment [57]. Thus, we can ask what happens if we unfold the tensor
evenly.

Let W (i1,i2,...,ik;j1,j2,...,jl) denote the
∏k

a=1 nia ×
∏l

b=1 njb matrix obtained

by concatenating the
∏k

a=1 nia dimensional slices of W specified by indices
in [nj1 ] × · · · × [njl ] along columns. For example, W (1;2,3,4) is the same as
W (1) in the original notation defined in Section 1.2. We say that an unfolding
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FIGURE 1.3: The number of samples necessary to recover a n× n× n× n
tensor of multilinear rank (2, 2, 2, 2). The number of samples at the phase
transition Mc was defined as the number of samples at which the empirical
probability of obtaining error smaller than 0.01 exceeded 1/2.

is balanced if the number of rows and columns are the same, e.g., W (1,2;3,4)

when nk = n.
Figure 1.3 shows the number of samples at the phase transition Mc against

n for the completion of 4th order balanced-sized tensors. We compared the
original overlapped Schatten 1-norm (1.5) against the following norm based
on three balanced unfoldings∣∣∣∣∣∣W∣∣∣∣∣∣

balanced
= ∥W (1,2;3,4)∥S1 + ∥W (1,3;2,4)∥S1 + ∥W (1,4;2,3)∥S1 .

See Mu et al. [37] for a related approach, though they only considered one of
the three possible balanced unfoldings.

The threshold Mc was defined as the number of samples at which the
probability that the reconstruction error

∣∣∣∣∣∣Ŵ −W∗
∣∣∣∣∣∣
F
was smaller than 0.01

exceeded 1/2. The dashed line corresponds to the original overlapped Schatten
1-norm (one mode against the rest). The dash-dotted line corresponds to the
overlapped Schatten 1-norm based on balanced unfoldings.

We can see that the empirical scaling of the balanced version is n2.08,
whereas that of the ordinary version is n2.93. Both of them were close to the
theoretically predicted scaling n2 and n3, respectively.

However, computationally this approach is more challenging. The major
computational cost for optimization is that of SVD. Since SVD scales as
O(m2n + m3) for an m × n matrix with m ≤ n, the more balanced, the
more challenging the computation becomes. Note that the comparison here is
made assuming that both approaches use the same ADMM-based optimiza-
tion algorithm (see Section 1.4.1). Thus there might be another optimization
algorithm (see e.g., Jaggi [25]) that work better in the balanced case.

Recently Mu et al. [37] derived a lower-bound for the overlapped Schat-
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ten 1-norm based on the framework developed by Amelunxen et al. [2]. The
lower-bound indeed shows that rnK−1 samples is unavoidable for the vanilla
version of the overlapped Schatten 1-norm. Motivated by the lower bound,
they proposed a balanced version (without overlap), which they call the .

1.6.2 Tensor nuclear norm

Chandrasekaran et al. [12] discuss a norm for tensors within the framework
of . Let A be an atomic set that consists of rank one tensors of unit Frobenius
norm:

A = {u1 ◦ u2 ◦ · · · ◦ uK : ∥uk∥ = 1 (k = 1, . . . ,K)}.

The is defined as follows:∣∣∣∣∣∣W∣∣∣∣∣∣
nuc

= inf
∑
a∈A

ca s.t. W =
∑
a∈A

cau
(a)
1 ◦ · · · ◦ u(a)

K ,

where with a slight abuse of notation, we use a ∈ A as an index for an element
in the atomic set.

It can be shown that for a tensor that admits an [28] with R terms
(decomposition (1.1) with orthogonality constraints between the components),
the nuclear norm can be related to the Frobenius norm as follows:∣∣∣∣∣∣W∣∣∣∣∣∣

nuc
≤

√
R
∣∣∣∣∣∣W∣∣∣∣∣∣

F
.

Moreover, the tensor spectral norm∣∣∣∣∣∣X ∣∣∣∣∣∣
op

= max
a∈A

X ×1 u
(a)
1 ×2 u

(a)
2 · · · ×K u

(a)
K ,

which is dual to the nuclear norm, is known to be of order O(
√
n) for a random

Gaussian tensor; see [40]. Thus it is natural to hope that we can prove that the
nuclear norm would achieve an optimal O(Rn) convex relaxation for tensors.
However, computationally, the tensor nuclear norm seems to be intractable for
K ≥ 3. Although it is convex, it involves infinitely many variables. There is no
analogue of linear matrix inequality or semidefinite programming for matrices
that can be used here to the best of our knowledge.

1.6.3 Interpretation of the result

That we can bound the error in Frobenius norm as we have presented
in Section 1.3 does not mean that our method is useful in practice. In fact,
tensor decomposition methods are often used to uncover latent factors and
gain insight about the data.

Here we present how such an insight can be gained from the solutions of
the two algorithms we presented in Section 1.4.
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For the overlapped approach, the factor matrices U1, . . . ,UK correspond-
ing to the Tucker decomposition (1.2) can be obtained by computing the left
singular vectors of the auxiliary matrices Z1, . . . ,ZK . The mode-k rank rk is
determined automatically by the proximity operator (1.20); importantly, the
rank at an optimum does not depend on the choice of η, though the rank
during optimization may depend on η. Once the factors are obtained, the core
can be obtained as follows:

C = W ×1 U1
⊤ ×2 U2

⊤ · · · ×K UK
⊤.

To get the stronger CP decomposition (1.1), one can perform any off-the-shelf
CP decomposition algorithm on the core C. This post-processing step is easier
than applying CP decomposition directly to the original large tensor with
noise and missing entries. In other words, this two-step approach allows us to
separate the tasks of generalization and interpretation; see [52] for details.

The latent approach is less easier to interpret the solution because in gen-
eral the sumW =

∑K
k=1 W(k) is not low-rank even when eachW(k) is. However

in practice we found that the solution is often singleton, i.e., only one non-zero
component W(k). This corresponds to the intuition that the latent Schatten
1-norm focuses on the low-rank-ness of the mode with the minimum mode-k
rank and do not care about the other modes. The fact that the solution is only
low-rank in one mode is still disappointing. This could be solved by including
more terms in the latent approach, which can be partially low-rank (there are
2K possibilities to penalize the sum of the Schatten 1-norms of some of the
modes) or balanced unfolding. If the resulting solution is a singleton, then the
model automatically chose which mode should be low-rank.

1.6.4 Related work

Liu et al. [33, 34] proposed the overlapped approach in the context of
image and video imputation. They used a penalty method to deal with the
equality constraints in (1.19). Li et al. [32] extended Liu et al.’s work to
sparse+low-rank decomposition of tensors (also known as sparse PCA) and
applied to background/shadow removal and face recognition. Li et al. also
used a penalty method for the optimization.

Signoretto et al. [47, 49, 48, 46] proposed and extended the overlapped
Schatten 1-norm in the context of kernel-based learning, i.e., learning higher-
order operators over Hilbert spaces. The use of kernel allows us to incorporate
smoothness (or side-information) when we see an entry in a K-way tensor as
a representation of a relation among objects from K different domains; see
also [1]. They also proposed an optimization algorithm that supports gen-
eral differentiable loss function L based on an (accelerated) proximal gradient
method [39, 6]; the algorithm employs ADMM to compute the proximal op-
erator corresponding to the overlapped Schatten 1-norm.

Gandy et al. [18] proposed ADMM and Douglas-Rachford splitting algo-
rithm for the overlapped approach.
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Yang et al. [58] proposed a fast optimization algorithm for the overlapped
approach based on a fixed-point iteration combined with continuation.

Goldfarb and Qin [19] studied low-rank+sparse tensor decomposition
based on the overlapped and latent Schatten 1-norms. They also proposed
adaptive weighting of the terms appearing in the overlapped Schatten 1-
norm (1.5) and reported that the adaptive version outperformed other meth-
ods in many cases. They also studied the relationship between the normalized
rank ∥n−1∥1/2∥r∥1/2 (the quantity that appears in the condition for M in
Theorem 3), the necessary sampling density, and the allowable fraction of
corrupted entries.

Zhang et al. [61] extended Li et al.’s work [32] on sparse+low-rank decom-
position in several interesting ways. They have incorporated transformations
that align each image in order to make the spatial low-rank assumption (on
the first two modes) as valid as possible (see also [36] for related work), while
keeping the sequence of images smooth by also penalizing the Schatten 1-norm
for the mode corresponding to the temporal dimension.

On the theoretical side, Nickel and Tresp [41] presented a generalization
bound for low multilinear rank tensor in the context of relational data analysis
by counting the number of possible sign patterns that low multilinear rank
tensors can attain. Although the theory does not lead to a model selection
criterion as we cannot provably compute the low-multilinear-rank decomposi-
tion at a given rank, yet it would be fruitful to study a convex relaxation for
the set of low-rank sign tensors; see e.g., [50].

Romera-Paredes and Pontil [45] proposed a convex relaxation of mode-k
rank with respect to the Frobenius norm ball and showed that it is tighter
than the overlapped Schatten 1-norm at some points. Although the resulting
regularizer is not a continuous function and thus challenging to compute, they
proposed a subgradient-based optimization algorithm.

Jiang et al. [26] studied the best rank-one approximation of super symmet-
ric even order tensors. They noticed that for super symmetric (meaning that
the tensor is invariant to arbitrary permutation of indices) even order tensors,
being rank-one is equivalent to a balanced unfolding (see Section 1.6.1) being
rank-one (as a matrix). Then they solved the best rank-one approximation
problem with the Schatten 1-norm regularization (which promotes rank-one
solution) under linear equality constraints that ensured that the solution was
super-symmetric. Empirically the solution was found to be rank one in most
of the cases. They also showed many non-symmetric problems can be reduced
to the symmetric case.

Krishnamurthy and Singh [30] proposed an adaptive sampling algorithm
for tensor completion and showed that it succeeds with high probability with
O(n) samples. The number of samples required in their adaptive setting also
depends on the true rank r and the coherence parameter µ0. They also showed
a lower bound that scales as O(rK−1n) under the incoherence assumption.

Application of the overlapped approach includes language models [24],
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hyper-spectral imaging [49], and multi-task learning [46, 44], besides image
reconstruction discussed in [33, 34, 32, 61].

1.7 Future directions

Compared to the overlapped Schatten 1-norm, the behavior of the latent
Schatten 1-norm is still unclear in some parts. First, although we have argued
that empirically the solution of the optimization problem is often a singleton
(only one non-zero component), this needs a better explanation. Second, al-
though we believe that the incoherence assumption is necessary to prove the
stronger inequality (1.13), it may not be necessary to obtain the weaker one
(1.14).

Given that the sample complexities of both the overlapped and latent
Schatten 1-norms are far from optimal, it would be extremely interesting to
explore the statistics-computation trade-off between what we can provably
achieve and how much it would be computationally expensive. Balanced un-
folding [37], tensor nuclear norm [12], and the new convex relaxation [45]
discussed in the previous section are candidates to be evaluated and analyzed.
It would also be interesting to study recent work on decomposition of tensors
arising from higher order moments of latent variable models [3] in this context.

Finally, nonnegativity [9, 31] and positive semidefiniteness [59] are con-
straints that are useful to impose on the factors in practice. Generalization
of the results for separable nonnegative matrix factorization [5, 7] to tensors
would be an interesting direction.
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