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We propose a framework for signal analysis of electroencephalography (EEG) that unifies tasks such as
feature extraction, feature selection, feature combination, and classification, which are often independently
tackled conventionally, under a regularized empirical risk minimization problem. The features are
automatically learned, selected and combined through a convex optimization problem. Moreover we
propose regularizers that induce novel types of sparsity providing a new technique for visualizing EEG of
subjects during tasks from a discriminative point of view. The proposed framework is applied to two typical
BCI problems, namely the P300 speller system and the prediction of self-paced finger tapping. In both
datasets the proposed approach shows competitive performance against conventional methods, while at the
same time the results are easier accessible to neurophysiological interpretation. Note that our novel
approach is not only applicable to Brain imaging beyond EEG but also to general discriminative modeling of
experimental paradigms beyond BCI.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Brain–computer interface (BCI) is a rapidly growing field of
research combining neurophysiological insights, statistical signal
analysis, and machine learning (Wolpaw et al., 2002; Dornhege et
al., 2007; Curran and Stokes, 2003; Kübler et al., 2001; Birbaumer et
al., 1999; Penny et al., 2000; Parra et al., 2002; Pfurtscheller et al.,
2006; Blankertz et al., 2006a, 2007). The goal of BCI research is to build
a communication channel from the brain to computers bypassing
peripheral nerves and muscle activity (Wolpaw et al., 2002). This can
help people who have damage in their peripheral pathway to recover
their communication abilities (e.g. Birbaumer et al. (1999); Kübler et
al. (2001); Nicolelis (2003); Hochberg et al. (2006)).

Among different techniques for the noninvasive measurement of
the human brain, the electroencephalography (EEG) is commercially
affordable and has excellent temporal resolution which enables real-
time interaction through BCI. Thus our primary focus in this paper is
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on EEG-based BCI but the techniques presented can also be applied to
other brain imaging techniques such as magnetoencephalography
(MEG) or fMRI. Note furthermore that discriminative techniques are a
valuable tool for a computational analysis of neuroscience experi-
ments beyond BCI (e.g. Haynes and Rees (2006); Parra et al. (2005)).

Based on a short segment of EEG called a trial, the signal analysis in
BCI aims to predict the brain state of a user out of prescribed options
(e.g. foot vs. left-hand motor imagery vs. rest). In machine learning
terms, this is a multi-class classification problem. The challenge in
EEG-based BCI is the low spatial resolution caused by volume
conduction, the high artifact and outlier content of the signal and
the mass of data that makes the application of conventional statistical
analysis difficult. Therefore many studies have focused on how to
extract a small number of task informative features from the data (see
e.g. Dornhege et al. (2007); Blankertz et al. (2008)) that can be fed
into some relatively simple classifiers; commonly used are linear
spatial filtering methods (e.g., common spatial pattern (Ramoser et
al., 2000; Blankertz et al., 2008) or independent component analysis
(Hyvärinen et al., 2001)) coupled with heuristic frequency band
selection (Blankertz et al., 2008) or band weighting (Tomioka et al.,
2006b; Wu et al., 2008). One of the shortcomings of the feature
extraction approaches is the strong and hard-to-control inductive bias
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that limits their application to rather specific experimental paradigms
that they are developed for. Another approach is the discriminative
approach that tries to optimize the classifier coefficients from the
training data under a unified criterion(Dyrholm and Parra, 2006;
Dyrholm et al., 2007; Christoforou et al., 2008; Farquhar et al., 2006;
Tomioka et al., 2007; Tomioka and Aihara, 2007). The theoretical
advantage of the discriminative approach is that the coefficients (e.g.,
spatial filter and temporal filter) are jointly optimized under a single
criterion. Moreover, inductive bias can be controlled in a principled
manner through regularization (Tikhonov and Arsenin, 1977; Vapnik,
1998). However many previous studies had to solve non-convex
optimization problems (Dyrholm et al., 2007; Tomioka et al., 2007),
which can be challenging because of multiple local minima and
difficulty in terminating the learning algorithms.

In this paper, we contribute to the discriminative approach in the
following three issues. First, we combine probabilistic data-fit criteria
with sparse regularizers. The proposed regularizers naturally induce
sparse or factorized models through a convex optimization problem;
moreover the number of components is automatically determined.
Second, we propose a probabilistic decoding model for P300 evoked
response based BCI; in addition we show that the decoding model can
be instantly converted into a loss function that is used for the training
of the classifier; thus no intermediate goal such as binary classification
needs to be imposed. Finally, we show how first-order and second-
order information in the signal (see Christoforou et al. (2008)) can be
combined and selected in a systematic manner through the dual
spectral (DS) regularization (Fazel et al., 2001; Srebro et al., 2005;
Tomioka and Aihara, 2007). The issue of complexity control, feature
extraction, and the interpretability of the resulting model is now
tackled in a unified and systematic manner under the roof of a convex
regularized empirical risk minimization problem.

This paper is organized as follows. In Signal analysis framework
section, our discriminative learning framework is presented. In P300
speller BCI section, the proposed framework is applied to the P300
speller BCI problem. In Self-paced finger tapping problem section, the
framework is applied to the problem of predicting self-paced finger
tapping. The results for the two BCI problems are given in Results:
P300 speller BCI section and Results: self-paced finger tapping dataset
section, respectively. On the P300 problem, the proposed approach
shows comparable performance to the winner of the BCI competition
(Blankertz et al., 2006b; Rakotomamonjy and Guigue, 2008) using
only a loss criterion derived from a novel predictor model and
regularization. Different aspects of the discriminative information
captured by different regularizers are discussed. On the self-paced
problem, the proposed approach shows competitive performance to
the winner of the competition (Blankertz et al., 2004; Wang et al.,
2004) and recently proposed second-order bilinear discriminant
analysis model (Christoforou et al., 2008). Our proposed DS
regularization provides a principled way of learning, selecting, and
combining different sources of information. Short discussions are
given at the end of each section. Earlier studies on discriminative
approaches to BCI are discussed in Discussion on earlier discrimina-
tive approaches section. Concluding remarks are given in Conclusion
section.

Materials and methods

Signal analysis framework

In this section we present our discriminative learning framework
for brain–computer interface. The framework consists of three
components. The first is a probabilistic predictor model that is used
for both decoding the intention of a user1 and learning the predictor
1 Here also other neuroscience paradigms than BCI can readily be used.
model from a collection of trials. The second component is the design
of a detector function. The last component is how to appropriately
control the complexity of the detector function. These three issues are
presented in Discriminative learning, Detector function, and Regular-
ization sections, respectively.

Discriminative learning
In any BCI system, the goal of signal analysis is to construct a

function that predicts the intention of a user from his/her brain signal.
In our discriminative approach we are interested in the whole
function from the brain signal to the probability distribution over
possible user intention, which we call a predictor. When we deal with
this type of probabilistic predictor we are facing two tasks. First, how
to decode the intention of a user given the brain signal and the
predictor. Second, how to learn the predictor from a collection of
labeled examples. The answers to these questions are derived
naturally from probability theory and statistics.

Let X ∈ X be the input brain signal and let q(Y|X) be the predictor,
which assigns probabilities to the user's command Y ∈ Y given the
brain signal X. The task of decoding is to find themost likely command
ŷ given the input X and the predictor q as follows:

ŷ=argmax q
yaY

Y = y jXð Þ: ð1Þ

The task of learning is to find a predictor from a suitably chosen
collection of candidates, which we call a model, and we assume that a
model is parameterized by a parameter vector θ∈Θ. We denote the
predictor specified by θ as qθ'; thus the model is a set {qθ : θ ∈ Θ }. In
order to say how a predictor qθ compares to another predictor qθ', it is
necessary to define a loss function. We can consider the probability
that the predictor assigns to each possible user intention y as the
payoff the predictor can obtain if the actual intention coincides with
the prediction; the predictor can choose its strategy between equally
distributing the probability mass over all the possible outcomes and
concentrating it on a single output that is based on the brain signal X.
This payoff is commonly measured in the logarithmic scale. The loss
function is thus defined as the negative logarithmic payoff (or the
Shannon information content in information theory (MacKay, 2003))
as follows:

ℓ X; yð Þ; θð Þ = − log qθ Y = y jXð Þ; ð2Þ

where X is the brain signal and y is the true intention of the user. Thus
the loss is smaller if the predictor predicts the actual intention of the
user with high confidence.

Suppose we are given a collection of input signal Xi and true
intention yi, which we denote {Xi, yi}i=1

n . It is reasonable to choose the
parameter θ that minimizes the empirical average of losses (see
MacKay (2003, Chap. 39)):

Ln θð Þ = 1
n

Xn
i=1

ℓ X i; yið Þ; θð Þ:

However, often the complexity of the class of predictors qθ is very
large and the minimization of Ln(θ) leads to overfitting due to small
sample size. Therefore, we learn the parameter θ by solving the
following constrained minimization problem:

minimize
θaΘ

Ln θð Þ subject to V θð ÞVC: ð3Þ

The second term Ω(θ) is called the regularizer and it measures the
complexity of the parameter configuration θ. C is a hyper-parameter
that controls the complexity of the model and is selected by cross-
validation. A complexity function induces a nested sequence of
subsetsΘC :={θ∈ Θ :Ω(θ)≤ C}, which is parameterized by the bound
C on the complexity; i.e., C1 b C2 b C3 b ··· implies ΘC1

oΘC2
oΘC3

o � ��
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and vice versa. Therefore we can consider a sequence of predictors
that we obtain through the learning framework (Eq. (3)) at
monotonically increasing level of complexity (see Vapnik (1998)).

If we suppose that the training examples {Xi, yi}i=1
n are sampled

independently and identically from some probability distribution p(X,
Y), the above function Ln(θ) can be considered as the empirical
version of the following function L(θ):

L θð Þ = D p Y jXð Þ j jqθ Y jXð Þð Þ + H p Y jXð Þð Þ;

where D(p||q) is the Kullback–Leibler divergence between two
probability distributions p and q (see e.g., MacKay (2003); Bishop
(2007)); the second term is the conditional entropy of Y given X and is
a constant that does not depend on the model parameter θ.

Logistic model. For example, the logistic regression model is a popular
model in a binary decision setting. The logisticmodel assumes the user
command Y to be either one of the two possibilities; e.g., Y=−1 and
Y=+1 for left and right-hand movement, respectively. The logistic
predictor qθ is defined through a latent function fθ; we define a real
valued function fθ which outputs a positive number if Y=+1 is more
likely than Y=−1 and vice versa. Then a logistic function u(z)=1/
(1+exp(−z)) (see Fig. 1) is applied to the output fθ (X) to convert it
into the probability of Y=+1 given X; similarly applying the logistic
function to − f(X) gives the probability of Y=−1 given X. Thus we
have the following expression for the predictor:

qθ Y = y jXð Þ = 1
1 + exp −yfθ Xð Þð Þ ya −1; + 1f gð Þ: ð4Þ

In fact, under the predictor qθ' defined above, the log likelihood ratio
of Y=+1 to Y=−1 given X is precisely the latent function value
fθ(X) as follows:

log
qθ Y = + 1 jXð Þ
qθ Y = − 1 jXð Þ = fθ Xð Þ:

The loss function for the logistic model is called the logistic loss and
can be written as follows:

ℓL X; yð Þ; θð Þ = log 1 + e−yfθ Xð Þ� �
; ð5Þ

which is obtained by taking the negative logarithm of Eq. (4). As
shown above, it is often a useful strategy to construct a model as a
combination of a class of functions that converts the input signal into a
scalar value and a link function that converts this value into the
probability of the command Y. In fact, we study models with a multi-
class extension of logistic link function in P300 speller BCI section and
another model that uses the logistic link function in Self-paced finger
tapping problem section. The function fθ is called a detector in this
article because in the BCI context it captures some characteristic
spatio-temporal activity in the brain; a class of functions parameter-
ized by θ ∈ Θ is called a detector model. Furthermore, we review
Fig. 1. Logistic function (see Eq. (4)).
different recent approaches in modeling detector functions fθ in
Discussion on earlier discriminative approaches section.

Detector function
We use the following linear detector function throughout this

article:

fθ Xð Þ = hW ;Xi + b; ð6Þ

where θ :=(W, b),W is a matrix of some appropriate size and b∈R is
a bias term. 〈W, X〉=∑ij W(i, j) X(i, j) is the inner product
between two matrices X and W (W (i, j) denotes the (i, j) element
of a matrix W).

In the simplest case, X is a short segment of appropriately filtered
EEG signal with C channels and T sampled time-points, i.e., X and W
are both T×C matrices. The detector is called the first-order detector
in this case. This model can be used to detect slow change in the
cortical potential (Blankertz et al., 2006a) and evoked response such
as P300 (Farwell and Donchin, 1988) and the error potential (Schalk
et al., 2000).

When we are also interested in the second-order information such
as variance and covariance, we can set X as a block diagonal
concatenation of these terms as follows:

X =

1
η1

Ξ 1ð Þ

1
η2;1

Ξ 2;1ð Þ

O
1

η2;K
Ξ 2;Kð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð7Þ

where Ξ(1) is the first-order term (X in the above first-order model)
and Ξ(2,k)=cov(X(k)) is the covariance matrix2 of a short segment of
band-pass filtered EEG X(k) for k=1, … , K. Here we consider K
second-order terms that are filtered by different (possibly over-
lapped) band-pass filters. We call X the augmented input matrix and
the corresponding W the augmented weight matrix. The normaliza-
tion factor η⁎ is introduced in order to prevent biasing the selection of
terms with large power or large size; it is defined as the square root of

the total variance3 of each block element, i.e., η�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j;k var Ξ� j; kð Þ� �q
where ⁎ ∈ {(1), (2, 1), … , (2, K)}. This choice is motivated by the
common practice in the ℓ1-regularization (or lasso (Tibshirani,
1996)) to standardize each feature to unit variance. In fact, when all
the block diagonal matrices are 1×1, the DS regularization (see
Regularization section) reduces to lasso and the above η⁎ reduces to
the standard deviation of each feature.

It can be shown that when we learn the augmented weight matrix
W under suitable regularization (see Eq. (3)), the weight matrix turns
out to have the same block diagonal structure as the input X. This
model is called the second-order detector. This model can be used to
detect oscillatory features such as event-related desynchronization
which is useful in detecting real or imaginedmovement (Pfurtscheller
and da Silva, 1999; Pfurtscheller et al., 2000; Blankertz et al., 2006a,
2008). In these tasks it is known that both the slow change in the
cortical potential and the event related desynchronization are useful
features to predict the movement (Dornhege et al., 2004; Wang et al.,
2004; Christoforou et al., 2008). Our contribution is to combine these
features in the block diagonal form in Eq. (7).
2 cov denotes the sample covariance matrix of the row vectors of a matrix (MATLAB
cov function).

3 var denotes element-wise sample variance with respect to a collection of matrices
Ξi
⁎(i = 1, … , n).
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Regularization
In this section we preset three types of regularizers (θ) in our

learning framework (Eq. (3)).
The first regularizer is the standard Frobenius norm of the weight

matrix as follows:

VF θð Þ = ‖W‖F =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW ;Wi

p
; ð8Þ

In other words, it is the Euclidean norm of the weight matrix viewed
as a vector.

The next three regularizers induce different types of sparsity in the
weight matrix. The first two of them are defined as the “linear sum of
group-wise norms”, where the group is defined a priori. We assume a
simple first-order detector in which the columns correspond to
electrodes and rows correspond to sampled time-points; the two
regularizers are called channel selection regularizer and temporal-
basis selection regularizer and are defined as follows:

VC θð Þ =
XC
c=1

‖W :; cð Þ‖2; ð9Þ

VT θð Þ =
XT
t=1

‖W t; :ð Þ‖2; ð10Þ

whereW(:, c) denotes the c-th column vector of the weight matrixW,
W(t, :) denotes the t-th row vector of W and ||·||2 is the vector
Euclidean norm. In Eq. (9) each row is grouped together. Similarly in
Eq. (10) each column is grouped together. Thus analogous to ℓ1-
regularization (known as lasso (Tibshirani, 1996)) the two regular-
izers induce sparsity in the electrode-wise (row-wise), and the time-
point-wise (column-wise) manners, respectively. This type of regu-
larization is known as group-lasso (Yuan and Lin, 2006) or M-FOCUSS
(Cotter et al., 2005) and recently also applied to the reconstruction of
focal vector fields (Haufe et al., 2008).

The last regularizer is defined as the linear sum of singular-values
of the weight matrix W, which is called the dual spectral (DS) norm
(Fazel et al., 2001)4.

VDS θð Þ = ‖W‖T :=
Xr
j=1

σ j Wð Þ; ð11Þ

where σj (W) is the j-th singular value of the weight matrixW and r is
the rank of W. The DS regularization can be considered as another
generalization of the ℓ1-regularization; it induces sparsity in the
singular-value spectrum of the weight matrix W. That is, it induces
low-rank matrix W. Similarly to group-lasso, when a singular-
component is switched off, all the degrees of freedom associated to
that component (i.e., left and right singular vectors) are simulta-
neously switched off. However in contrast to group-lasso regularizer,
there is no notion of any group a priori. The DS regularization
automatically tunes the feature detectors as well as the rank ofW. It is
also interesting to contrast the dual spectral regularizer to the
Frobenius norm regularizer (Eq. (8)). The Frobenius norm can be
rewritten as the ℓ2-norm on the singular-value spectrum as follows:

VF θð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr WhWð Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr
j=1

σ2
j Wð Þ

q
;

ð12Þ

wherewe used the fact that the trace of a positive semidefinitematrix is
equal to the sum of its eigenvalues which equals the sum of squared
singular values of W. Comparing Eq. (12) and Eq. (11), we can
understand the Frobenius norm and the DS norm as the ℓ2 and ℓ1-
norm on the singular-value spectrum of a matrix, respectively. In
4 It is also known as the trace norm (Srebro et al., 2005), the Ky-Fan r-norm (Yuan
et al., 2007), and the nuclear norm (Boyd and Vandenberghe, 2004).
machine learning literature, the low-rank enforcing property of the
dual spectral norm is well known and has been used in applications
such as collaborative filtering (Srebro, 2004; Srebro et al., 2005; Rennie
and Srebro, 2005; Abernethy et al., 2006), multi-class classification
(Amit et al., 2007), multi-output prediction (Argyriou et al., 2007,
2008; Yuan et al., 2007). It has been also successfully applied to the
classification of motor-imagery based BCI (Tomioka and Aihara (2007),
see also Discussion on earlier discriminative approaches section).

All the above regularizers give rise to some conic constraints in Eq.
(3). The Frobenius and group-lasso-type regularizers (Eqs. (8)–(10))
induce the second-order cone constraint and the DS regularizer (Eq.
(11)) induces the positive semidefinite cone constraint. In fact,
mathematically these cones are understood as generalizations of the
positive-orthant cone induced by the ℓ1- (lasso) regularizer (Faraut
and Koranyi, 1995). Some algorithmic details of the minimization in
Eq. (3) are presented in Appendix A.

P300 speller BCI

In this section we apply the general framework presented in Signal
analysis framework section to a brain-controlled spelling system
known as P300 speller. The design of the spelling system is reviewed
in P300 speller system section. The probabilistic predictor model
tailored for the P300 speller system is proposed in Predictor model for
P300 speller section. The details about preprocessing can be found in
Signal acquisition and preprocessing section.

P300 speller system
Here we briefly describe the P300 speller system designed by

Farwell and Donchin (1988). The subjects are presented a 6×6 table
of 36 letters on the screen (see Fig. 2); they are instructed to focus on
the letter they wish to spell for some specified period for each letter;
during that period the rows and columns of the table are intensified
(more specifically highlighted) in a random order. It is known that the
subject's brain shows a characteristic reaction with a latency of about
300 ms called P300 when the row or column that is intensified
includes the letter on which the subject is placing his/her focus. Thus
by detecting the P300 response, we can predict the letter that the
subject is trying to spell. Each intensification lasts 100 ms with an
interval of 75 ms afterwards; the intensifications of all 6 rows and 6
columns (in a random order) are repeated 15 times; hence one letter
takes 175 ms×12×15=31.5 s. Note that the period of intensification
(175 ms) is shorter than the expected reaction of the brain (300 ms).
Thus the intervals we analyze are usually overlaps of several
intensifications.
Fig. 2. Table of letters shown on the display in the P300 speller system (Farwell and
Donchin, 1988). The third row is intensified.



Fig. 3. Schematic comparison of our trial-wise multinomial detection approach and the
conventional epoch-wise binary detection approach. Suppose the alphabetA consists of
three letters, “a”, “b”, and “c” andwe have three trials containing three epochs each (i.e.,
response after the intensification of “a”, “b”, and “c”). The true letter is “c” for all the three
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Predictor model for P300 speller
Let the alphabet A be the set of all letters in the table, a trial X be a

list of epochs5 X=(X(1),… , X(12)), X(l) ∈ RT×C be the short segment of
multi-channel EEG recorded after each intensification (1–6 corre-
sponds to columns and 7–12 corresponds to rows), where C is the
number of channels and T is the number of sampled time-points, and
y be the true letter that the subject intends to spell during the
intensifications. Inspired by Farwell and Donchin (1988) we model
the predictive probability over 36 candidate letters proportional to
the exponential of the sum of detector function outputs at the two
corresponding row and column intensifications as follows:

qθ y jXð Þ =
exp fθ X col yð Þð Þ

� �
m fθ X row yð Þ+6ð Þ
� �� �

X
y VaA exp fθ X col yVð Þð Þ

� �
m fθ X row yVð Þ+6ð Þ
� �� � ; ð13Þ

where col(y) and row(y) are the indices of the column and the row of
the letter y on the display (see Fig. 2). It is easy to see that the above
Eq. (13) can be decomposed into a direct product of two six-class
multinomial distribution as follows:

qθ y jXð Þ = efθ X col yð Þð Þð ÞX6
l=1

efθ X lð Þð Þ �
efθ X row yð Þ+6ð Þð ÞX12

l=7
efθ X lð Þð Þ : ð14Þ

Here fθ (X(l)) is a first-order detector that outputs a scalar value for
each intensification as follows:

fθ X lð Þ
� �

= hW ;X lð Þi; l = 1; :::;12ð Þ; ð15Þ

where the weight matrix W has T rows and C columns. The bias term
is omitted because the probability distribution in Eq. (14) is invariant
to a constant shift of Eq. (15). Note that the parameter W is shared
among all inputs X(l) (l=1, … , 12). Another difference between the
proposed predictor model (Eq. (14)) and the general multi-class
likelihood (Bishop, 2007) is that the l-th output value only depends
on the l-th input matrix X(l). Furthermore, let a subtrial be the
collection of six epochs within a trial with either row (l=1, … , 6) or
column (l=7, … , 12) intensifications; thus a trial consists of two
subtrials. Note that the contribution of the subtrials to the predictor
(Eq. (14)) is independent of each other. Thus mathematically Eq. (14)
is equivalent to P300 speller for six letters with two times as many
trials. Note that our proposed predictor model (Eq. (13)) can also
accommodate novel coding schemes for P300 speller proposed in Hill
et al. (2009).

For the decoding, according to Eq. (1), we maximize the posterior
probability q(y|X) given X with respect to y as follows:

ŷ = argmax
yaA

logqθ y jXð Þ

= argmax
yaA

fθ X col yð Þð Þ
� �

m fθ X row yð Þ+6ð Þ
� �� �

;
ð16Þ

which is simply to choose the column and row with maximum
response.

As we have seen in the previous section, the above model is used
simultaneously for decoding the letter and learning the parameter W;
according to Eq. (2)) the loss function is defined as follows:

ℓ X; yð Þ; θð Þ = − fθ X col yð Þð Þ
� �

+ log
X6
l=1

efθ X lð Þð Þ
 !

− fθ X row yð Þ+6ð Þ
� �

+ log
X12
l=7

efθ X lð Þð Þ
 !

:

5 In this section we reserve the term trial for a collection of short segments of EEG
(called epoch) recorded after different intensifications for each character.
The above model contrasts sharply to the conventional approach that
first trains a binary classifier that detects P300 response and then
combines them to predict the letter (see e.g., Rakotomamonjy and
Guigue (2008)) in the following way. The proposed multinomial
model is normalized in a subtrial-wise manner whereas the
conventional binary approach is normalized in an epoch-wise
manner. More specifically, we have a budget of probability one for
each subtrial that we can distribute over the epochs within the sub-
trial whereas the conventional binary approach has the same budget
for each epoch which is distributed between the possibility that it
contains P300 response or not. This epoch-wise normalization
imposes stronger constraint on the detector function than our
subtrial-wise normalization. In fact, the conventional binary approach
tries to separate all the positive epochs (which contains P300
response) from all the negative epochs (which contains no P300
response) whereas the proposed subtrial-wise multinomial approach
tries to align the positive epoch in front of the negative epochs in the
same subtrial (see Fig. 3(A)). In other words, only the detector output
trials. Thus “a” and “b” are negative epochs (marked with crosses) and “c” are positive
epochs (marked with circles). (A) Conventional binary model learns strict boundary
whereas the proposed multinomial model only learns alignment. (B) The binary
decision boundary can be nonlinear even when the optimal detector function is linear.



6
filtfilt performs zero-phase digital filtering by applying the filter in both the

forward and reverse directions. This is necessary in this dataset because the signal is
provided as a collection of 500ms long segments.
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value in a positive epoch relative to the negative epochs in the same
subtrialmatters for the proposed model. Furthermore, even when the
optimal detector function is linear, the binary decision boundary can
be nonlinear as in Fig. 3(B). Moreover there is no class bias problem
which arise in the conventional binary detection approach because
the whole (sub)-trial is fed jointly to the predictor. Furthermore we
can directly measure the letter predictor accuracy for model selection
without introducing auxiliary performance measure as in Rakotoma-
monjy and Guigue (2008).

Signal acquisition and preprocessing
We use the P300 dataset (dataset II) provided by Jonathan R.

Wolpaw, Gerwin Schalk, and Dean Krusienski in the BCI competition
III (Blankertz et al., 2006b). The dataset includes two subjects namely
A and B. The signal is recorded with a 64 channel EEG amplifier. We
low-pass filter the signal at 20 Hz, down sample the signal to 60 Hz,
and cut out an interval of 600ms from the onset of each intensification
as an epoch X(l) ∈ RT×C where T=37 and C=64 (l=1,… , 12). A trial
X ∈ (RT×C)12 consists of 12 epochs and is assigned a single letter y ∈
A. For each letter, trials (each consisting of 12 epochs) are repeated 15
times. These repetitions are simply considered as separate training
examples; of course the first trial and the last trial for one letter might
have different statistical character but the detector would regard this
difference as inner-class variability and would become invariant as
possible to the difference. Since the training set consists of 85 letters,
we have 15·85=1275 training examples consisting of 12 epochs.

Before applying the learning algorithm (Eq. (3)), we apply
preprocessing matrices Ps and Pt to the low-pass filtered signal X(l)LP

as X(l)=PtX(l)
LP Ps. The spatial and temporal preprocessing matrices Ps

and Pt are defined as follows. For the channel selection regularizer and
the temporal-basis selection regularizer, we choose Ps=diag (σ1

s , … ,
σC
s)−1 and Pt=diag(σ1

t ,… , σT
t)−1 whereσc

s andσt
t are the square roots

of the average variance of the c-th channel and the t-th time-point,
respectively. This choice approximately normalizes each channel and
time-point to unit variance. However it does notmix different channels
or different time-points because we aim to select a few informative
ones from them. For the Frobenius norm and DS norm regularizers, we
chosePs=∑s−1/4 andPt=∑t−1/4,where∑s and∑t are thepooled
covariance matrices in the spatial and temporal domain defined as
follows:

Ps =
1

12n

Xn
i=1

X12
l=1

cov XLP
i lð Þ

� �
;

Pt =
1

12n

Xn
i=1

X12
l=1

cov XLP⊤

i lð Þ
� �

:

The exponent −1/4 is empirically found to produce a signal matrix
X(l) that has approximately unit variance for every element. This is
because the variance of the raw signal is counted both in ∑s and∑t.
In contrast to the spatial/temporal selection regularizer, there is no
need to restrict the preprocessing matrices to a diagonal form because
the goal is to choose a few informative pairs of spatial and temporal
filters.

The test data consists of 100 letters; also 12 different intensifica-
tions are repeated 15 times (in a random order) in the test set. We
report the results of (a) averaging all the 15 repetitions (M=15) and
(b) averaging only the first 5 repetitions (M=5) in the prediction of
each letter.

Self-paced finger tapping problem

In this section, the general framework presented in Signal
analysis framework section is applied to the problem of single-trial
prediction of self-paced finger tapping. The problem and the dataset
is outlined in Problem setting section. In contrast to the P300 speller
system, because the problem is binary classification, the choice of
link function is rather simple. The challenge is how to incorporate
different sources of information, namely the slow change in the
cortical potential and the event-related modulation of rhythmic
activity, in a principled manner. To this end, three detector functions
are presented in Preprocessing and predictor model for the self-
paced problem section.

Problem setting
In the self-paced finger tapping dataset (dataset IV, BCI competi-

tion 2003 (Blankertz et al., 2004)), the goal is to predict the type of
upcoming voluntary finger movement before it actually occurs
(Blankertz et al., 2002). EEG of a subject was recorded while the
subject was typing certain keys on the keyboard at his/her own choice
at the average speed of 1 key stroke per second. The subject used
either the index finger or the little finger of the left hand or the right
hand. Here the task is to predict whether the upcoming key press is by
the left or right hand according to the task at the competition.

Preprocessing and predictor model for the self-paced problem
EEG is recorded from 28 electrodes at sampling frequency 1000Hz

and down-sampled to 100 Hz. The raw signal matrix Xraw ∈ RT×C is a
short segment of multi-channel EEG recording starting 630 ms and
ending 130 ms before each key press, where C=28 and T=50. The
training set contains in total 316 trials which consists of 159 left-hand
and 157 right-hand trials.

Since the problem is binary we use the logistic predictor model
(Eq. (4)); thus the decoding is carried out by simply taking the sign of
the detector function as follows:

ŷ =
+ 1 if fθ Xð Þz0;

−1 if fθ Xð Þb0:

(

For the learning of the detector function the logistic loss function
(Eq. (5)) is used in Eq. (3).

For the detector function we propose three models. The first
function is a simple first-order model that only captures the slow
change in the potential. Thus the weight matrix W in Eq. (6) has T
rows and C columns. The input matrix Xraw is low-pass filtered at
20 Hz and preprocessed as X=PtXLPPs with Pt=∑t−1/4 and
Ps=∑s−1/4 as in the P300 speller problem (see Signal acquisition
and preprocessing section in P300 speller BCI section).

The second function consists of both first-order term and a wide-
band (7–30 Hz) second-order covariance term which are concate-
nated along the diagonal of the input matrix (see Eq. (7)). It is called
the wide-band second-order model. The first-order term Ξ(1) is
preprocessed in the same way as the above first-order model; the
second-order term is band-pass filtered at 7–30 Hz and preprocessed
with a spatial whitening matrix ∑s−1/2, i.e., Ξ(2,1)=∑s−1/2cov
(XBP)∑s−1/2.

Finally the last function consists of the first-order term and two
second-order terms that capture the alpha-band (7–15 Hz) and the
beta-band (15–30 Hz) which again form the augmented input matrix
by block diagonal concatenation (see Eq. (7)). It is called the double-
band second-order model. Similarly, the first-order term Ξ(1) is
preprocessed in the same way as the above models; the two
second-order terms Ξ(2,1) and Ξ(2,2) are band-pass filtered at 7–
15 Hz and 15–30 Hz, respectively, and spatially whitened individually.

All the temporal filtering mentioned above is done using the
MATLAB function filtfilt6 because it minimizes the effect of start-up
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transients. We test the Frobenius norm regularizer as the base line as
well as the proposed DS norm regularizer. Our aim is to simulta-
neously learn and select few informative spatio-temporal filters in a
systematic manner.

Results: P300 speller BCI

The result of the proposed framework applied to P300 speller BCI
(P300 speller BCI section) is given in this section. Additionally
discussion including the interpretation provided by the proposed
three sparse regularizers is given in Discussion section.
Fig. 4. Classification accuracy and the number of active components obtained with different r
(M=5) and 15 repetitions (M=15), respectively. The dashed lines with error bars show the
each figure: number of active components. The vertical dashed lines show the regularization
The bottom part shows the number of non-zero singular values of theweight matrix. (B) Chan
norms. (C) Temporal-basis selection regularizer. The bottom part shows the number of tem
shows the number of non-zero singular values of the weight matrix.
Performance

Figs. 4 (A–D) show the performance of the proposed decoding
model with (A) Frobenius norm, (B) channel selection regularizer, (C)
temporal-basis selection regularizer, and (D) DS norm regularizer,
respectively. The classification accuracy (solid line) obtained at the
regularization constant chosen by cross-validation is marked with a
circle. The cross-validation accuracy is also shown as dashed lines
with error bars; we show the mean and standard deviation of two
runs of 10-fold cross-validation. Note that we compute the character
recognition accuracy for each number of repetitions M on the
egularizers. Top part of each figure: the blue and green lines correspond to 5 repetitions
cross-validation performance. The solid lines show the test performance. Bottom part of
constant chosen for the visualization in Figs. 6 and 7. (A) Frobenius norm regularization.
nel selection regularizer. The bottom part shows the number of channels with non-zero
poral bases with non-zero norms. (D) Dual spectral norm regularizer. The bottom part



Table 1
Classification accuracy in % obtained with four regularizers namely channel selection
regularizer (CSR, Eq. (9)), temporal-basis selection regularizer (TSR, Eq. (10)), and the
dual spectral norm regularizer (DS, Eqs. (11)), compared against the winner of the
competition (R&G).

Subject Frobenius CSR TSR DS R&G

A (M=5) 67 68 64 71 68
A (M=15) 98 98 99 99 98
B (M=5) 77 81 78 79 76
B (M=15) 93 93 95 94 95
mean (M=5) 72 74.5 71 75 72
mean (M=15) 95.5 95.5 97 96.5 96.5

Fig. 5. The accuracy of the proposed dual spectral regularization compared to
Rakotomamonjy and Guigue (2008) at variety of number of repetitions.
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validation set. Thus we can choose the best model depending on the
target information transfer rate.

In addition, the number of active components7 is shown at the
bottom of each plot. The plot is almost flat for the Frobenius norm
regularizer, which employs no selection mechanism. The number of
components falls sharply for the channel selection regularizer and the
temporal-basis selection regularizer but it seems that the selection
occurs at the cost of performance reduction. In contrast, the number of
components (rank) can be greatly reduced with little cost until some
point for the DS regularization.

Table 1 summarizes the test accuracy obtained at the selected
regularization constant. The result from Rakotomamonjy and Guigue
(2008) who won the competition is also shown. Bold and italic
numbers are the best and the second best accuracy for each subject
and number of repetitions. Note that the results of the winner are
slightly different from the ones that are available from the official BCI
competition website; this is because we recomputed the results using
the scripts provided by the winner8.

Discussion

The performance of the proposed regularizers are comparable to
that of the winner of the competition except for the Frobenius norm
regularizer. In addition, in Fig. 5, the performance of the proposed
model with the DS regularizer is compared against that of the winner
(R&G) at various number of repetitions M. Although it is difficult to
draw any conclusion from such a small test, for both subjects the
proposed method is competitive to Rakotomamonjy and Guigue
(2008) for most M especially at small number of repetitions. This can
be partly explained by the fact that we choose the regularization
constant C using the character recognition accuracy on the validation
set for each M whereas an auxiliary measure for model selection
based on the binary classification model is used in Rakotomamonjy
and Guigue (2008), which does not take the number of repetitions
into account.

We should note that although the normalization by ∑t−1/4 and
∑s− 1/4 from both sides seems sensible from dimensionality
consideration and its separability, in principle this should be also
considered as a hyper-parameter that needs to be selected based on
the training data. In fact, we obtained a lower performance by
normalizing each element of the input matrices to unit variance,
which is actually not preferable because it cannot be separated into
the spatial part and the temporal part as the above normalization
(results not shown).
7 The number of active components is defined as follows: given the weight matrix
W let s1, … , sr be the component norms (column-wise norms for the channel
selection regularizer, row-wise norms for the temporal-basis selection regularizer and
the singular values for the DS regularizer.) #active components = |sj : sj N 0.01maxj
(sj)|.

8 Scripts are available from http://asi.insa-rouen.fr/enseignants/~arakotom/code/
bciindex.html.
Different types of sparsity induced by the regularizers are useful in
understanding how classifiers work and also understanding inter-
subject variability. The weight matrices obtained with the three
sparsity inducing regularizer are visualized in Figs. 6 and 7 for subjects
A and B, respectively. The first two plots (Figs. 6A, B) and Figs. 7A, B)
show the weight matrix including the preprocessing matrices Pt and
Ps defined as Wraw=PtW Ps which has again T rows and C columns.
The upper plot shows the temporal slice of Wraw at the time-point
shown above. The temporal slice Wraw(t, :) is color coded as blue–
green–red from negative to positive and since it is a C dimensional
vector, it is mapped on a scalp viewed from above (nose pointing
upwards). The lower plot shows the spatial slice Wraw(:, c) for every
electrode along time. The last plots (Figs. 6C and 7C) show the leading
singular vectors of the weight matrices obtained with the DS
regularization. We first perform singular-value decomposition of the
low-rank weight matrix asW=Udiag(σ1,… , σr)V ⊤ where U is a T× r
matrix and V is a C×r matrix. Then we define a spatial filter wj

s and a
spatial pattern ajs as follows:

ws
j = PsV :; jð Þ; as

j = Ps� �−1V :; jð Þ j = 1; :::; rð Þ:

A spatial filter is a coefficient vector applied to the raw (low-pass
filtered) signal as part of the classifier. On the other hand, the spatial
pattern of a given spatial filter is the EEG activity that is optimally
captured by the corresponding spatial filter. That is ajs is orthogonal to
every wj′

s for j′≠ j. Similarly a temporal filter wj
t and a temporal

pattern ajt is defined from U and Pt. Now we have a decomposition of
the raw coefficient matrix Wraw that includes the preprocessing and
classifier coefficient as Wraw=∑j=1

r σjwj
twj

s. Note that using the
spatial/temporal filters we can decompose the first-order model (Eq.
(15)) as follows:

fθ X lð Þ
� �

= hW ; PtXLP
lð ÞP

si =
Xr
j=1

σ jw
t⊤

j XLP
lð Þw

s
j :

Moreover, one can assume the following generative model for the
band-pass filtered signal X(l)

LP:

XLP
ðlÞ =

Xr
j=1

η lð Þ
j at

ja
s⊤
j + N lð Þ

:

where ajs and ajt functions as a fixed spatial/temporal-basis function,
ηj(l) is a task-related component, and N(l) is the non-task-related
component (i.e., wt⊤

j N lð Þws
j = 0 8jð Þ). Thus the spatial/temporal

http://asi.insa-rouen.fr/enseignants/~arakotom/code/bciindex.html
http://asi.insa-rouen.fr/enseignants/~arakotom/code/bciindex.html


Fig. 6. Spatial/temporal profile of subject A. (A) Channel selection regularizer. ΩC(θ)=57. (B) Temporal-basis selection regularizer. ΩT(θ)=59. (C) Dual spectral regularizer.
Ω⁎(θ)=0.70.
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patterns aj and filters wj provide forward and backward view on the
generation of task-related EEG activities, respectively (Parra et al.,
2005; Blankertz et al., 2008). Finally, the spatial filter, spatial pattern,
and the temporal pattern are plotted from left to right for each left/
right singular vector pairs of the leading singular values from top to
bottom. The spatial filters/patterns are plotted in the same way as
above. The temporal patterns, which are T dimensional vectors, are
plotted along time. The singular value is also shown vertically at the
left end of each row.
The channel selection regularizer (see Figs. 6A and 7A) is good at
spatially localizing the discriminative information. For both subjects A
and B we can see occipital focus in the early phase and more parietal-
central focus in the later phase.

On the other hand, the temporal-basis selection regularizer
localizes the discriminative information in the temporal domain. For
subject A (Fig. 6B bottom), there is a prominent negative peak at
183 ms and a broad positive component from 350 ms to 500 ms,
which roughly agree with the early occipital component and the late



Fig. 7. Spatial/temporal profile of subject B. (A) Channel selection regularizer. ΩC(θ)=66. (B) Temporal-basis selection regularizer. ΩT(θ)=51. (C) Dual spectral regularizer.
Ω⁎(θ)=0.89.
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Fig. 8. Spatial/temporal profile of subject B with the dual spectral regularizer. The first two components in Fig. 7C are merged proportional to their singular values.
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parietal–central component mentioned above. For subject B (Fig. 7B
bottom), the strong negative peak sits around 217 ms and, similarly
to subject A, a sustained discriminability can be observed from
300 ms to 450 ms. Note however that for both subjects the spatial
localization cannot be seen as clearly as in the channel selection
regularizer.

The DS regularizer provides a small number of pairs of spatial and
temporal filters that show both spatial and temporal localization of
the discriminative information in a compact manner. The two plots
(Figs. 6C and 7C) confirm our earlier observation that there are two
major discriminative components: the early occipital component (the
second row in Fig. 6C and the first two rows in Fig. 7C) and the late
central component (the first row in Fig. 6C and the third row in
Fig. 7C). From the magnitude of the singular values, it seems that the
classifier relies more on the late sustained component for subject A
whereas for subject B it relies more on the early component around
217 ms. Interestingly the early component was split into the first two
components for subject B. The spatial focus in the occipital area and
the temporal focus around 217 ms can be seen clearer in Fig. 8 where
we plotted the first two components mixed proportional to their
singular values.
Fig. 9. Classification accuracies of the three proposed models with two different regularizers
the Frobenius norm regularizer (green curves) are shown against the complexity of the re
accuracy (in %). The dashed curves with error bars show the cross-validation accuracy. Botto
against the dual spectral norm of the obtained classifiers. The complexity of the classifiers th
lines. See Preprocessing and predictor model for the self-paced problem section for the defin
model with a first-order term and a wide-band (7–30 Hz) second-order term. (C) Double-b
band second-order terms.
Note that our findings are consistent with the study by Krusienski
et al. (2008) in which they reported that the combination of central
and posterior electrode provided the best performance in average
over seven subjects.

Finally we note that the application of the proposed model in an
online BCI is efficient because of the linearity of the detector function
Eq. (15); low-pass filtering can be applied to the one dimensional
signal obtained by applying the classifier in an online manner.

Results: self-paced finger tapping dataset

The result of the proposed framework applied to the self-paced
finger tapping dataset (Self-paced finger tapping problem section) is
given in Performance section and a discussion including the
visualization of spatial/temporal filter pairs obtained from the DS
regularization is given in Discussion section.

Performance

Figs. 9A–C show the classification accuracy of the proposed three
detector models with the Frobenius and DS norm regularization. The
. Top plots: the accuracies obtained from the dual spectral regularizer (blue curves) and
sulting classifiers measured by the dual spectral norm. The solid curves show the test
m plots: the ranks of the weight matrices obtained from the two regularizers are shown
at are used in the visualization (see Figs. 10–12) are marked with vertical gray dashed
ition of the three proposed models. (A) First-order model. (B) Wide-band second order
and second-order model with a first-order term, alpha (7–15 Hz) and beta (15–30 Hz)



Table 2
Comparison of the complexity (in terms of the number of parameters) and the performance of three proposed models and two earlier studies.

First-order
model

Wide-band (7–30 Hz)
second-order model

Double-band
(7–15 Hz; 15–30 Hz)
second-order model

Wang et al. (2004)
(1st-order +wide-band
(10–33 Hz) +19 selected channels)

SOBDA
(1st-order +wide-band
(10–33 Hz))

#parameters 1401 (433) 1807 (341) 2213 (559) 282 135
DS 75 (85) 88 (88) 82 (87) 84 87
Frobenius 75 (77) 81 (81) 76 (78)

In the first row the number of parameters is shown (see main text for the derivation); the number of active parameters is also shown in parenthesis for the proposed models. The
classification accuracy is shown in %. For the proposed models the accuracy obtained with two regularization strategies are shown. The cross-validation accuracy used for the
selection of the regularization constant is shown inside parentheses.

9 The number of active parameters is calculated from the rank of the weight matrix,
i.e., rank = r matrix of size R × C has (R + C)r − r2 active parameters.
10 Since the block weight matrix associate to the second-order component (see Eq.
(7)) is symmetric, we show the eigenvalues instead of singular values for the second-
order components.
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2×10 fold cross-validation accuracy used for the selection of the
regularization constant is also shown as a dashed curve with error
bars for each detector model and regularizer. The accuracies obtained
at the selected regularization constants are marked with circles. The
accuracy is plotted at the complexity measured by the DS norm for the
classifiers obtained with the two regularizers. This is done in order to
compare the performance of the two classifiers at the same
complexity. The original complexity measure of the Frobenius norm
regularized classifiers is also shown as second axis in each figure. Note
that this is only possible when the DS norm of the Frobenius
regularized model grows monotonically with the regularization
constant.

The performance obtained with the two regularizers is summa-
rized in Table 2. The performance of the winner of the competition
(Wang et al., 2004) and a recently proposed bilinear discriminant
analysis (Christoforou et al., 2008) is also shown. The best accuracy
88% is obtained with the wide-band second-order model with the DS
regularization which also achieved the highest with respect to the
cross-validation accuracy.

Discussion

In Fig. 9A we can see that the performance of the DS norm
regularizer is higher than the Frobenius norm regularizer over the
whole range of complexity. The performance of the two regularizers
converges to the same value when the highest complexity is allowed.
Indeed the training loss Ln(θ) is less than 10−10 at the highest
complexity. Thus the difference in the regularizer plays almost no
role. Similar trends can also be seen in Figs. 9B and 9C.

Incorporating the wide-band (7–30 Hz) second-order term
significantly improves the performance (see Fig. 9B) as reported
earlier in (Dornhege et al., 2004; Wang et al., 2004; Christoforou et al.,
2008). However the performance is reduced if we allow further
flexibility by dealing with the alpha-band (7–15 Hz) and beta-band
(15–30 Hz) separately (see Fig. 9C). One possible explanation is over-
fitting. In addition, the cross-validation failed to predict the drop in
the accuracy aboveΩDS(θ)N100. Strong correlation between the alpha
and beta-band may also account for the poor performance; i.e.,
dealing with the two bands separately may not provide more
information in comparison to the increased dimensionality.

In addition, the dimensionalities of the proposed detector models
are compared to those of the two earlier studies in Table 2. The
number of parameters is calculated as follows: for the first-order
model it is 28(channels)×50(time-points) 1(bias)=1401; for the
second-order model adding 406 (the degree of freedom of 28×28
symmetric matrix) it is 1807; for the double-band second-order
model it is 2213 with an additional 406. For Wang et al. (2004),
since they used a rank=2 first-order term with 4 time-points
((28+4)·2=64), a rank=6 wide-band second-order term with 4
time-points ((28+4)·6=192), hand-chosen 19 electrodes with a
fixed temporal filter (19), and 3 classifier weights and 4 bias
terms, it is 282. For SOBDA (Christoforou et al., 2008), since they
used a rank=1 first-order term with 50 time-points and a
rank=2 second-order term with no temporal information, and a
single bias term, it is 28+50+28·2+1=135. Although, the raw
dimensionality of the proposed models are higher than those of
the two earlier studies, the numbers of active parameters9 at the
selected regularization constant (shown inside the parentheses)
are of the same order as the earlier studies. Importantly for the
proposed models, the rank is automatically tuned through the
regularization. Similar models which in contrast had to fix the rank
a priori have been employed in earlier studies (see Wang et al.
(2004); Christoforou et al. (2008) and Discussion on earlier
discriminative approaches section).

The spatial/temporal profiles of the three proposed models are
visualized in Figs. 10–12. See Discussion section in Results: P300
speller BCI section for the definition of spatial/temporal filters and
patterns. The top two components obtained from the first-order
term seems to be preserved from the simple first-order model to the
most complex double-band second-order model. The first compo-
nent clearly focuses on the lateralized readiness potential. This can
be seen from the bipolar structure of the spatial pattern (two peaks
with opposite signs on left and right motor cortices) as well as the
temporal profile that drops monotonically towards the key press.
The meaning of the second component is not obvious. From the
downward trend along time, we conjecture that it also detects some
part of the readiness potential that is not captured by the first
component though the contribution of this component to the
classifier is one order smaller than the first component.

In Fig. 11, we can find typical spatial patterns for event-
related (de)-synchronization (ERD/ERS (Pfurtscheller and da Silva,
1999). The first second-order component (third row) captures
ERD in the right-hand area (which can be seen from the negative
sign of the eigenvalue10 shown next to the filter) and the second
second-order component (forth row) captures ERD in the left-
hand area.

Interestingly this discriminability is mainly due to the beta-band.
In Fig. 12, we can find spatial filter/pattern pairs that look similar to
the ERD/ERS components in Fig. 11 in the bottom two rows
(components obtained from the beta-band) though the order is
reversed. Then what are the two alpha components (rows 3–4)
doing? From the spatial filters they might seem to be focusing on the
right motor cortex which delivers the ERD in the left-hand trials.
However the negative signs of the eigenvalues and the spatial
patterns suggest that these components detect ERD in the right-
hand trials. We confirm this in Fig. 13 where we plot the log powers of
the spatially filtered beta-band features against those of alpha-band
features. Indeed both alpha-band features show lower magnitude in
the right-hand trials than in the left-hand trials.



Fig. 10. Spatial/temporal profile of the proposed first-order model at ΩDS(θ)=1.27 (see Fig. 9A). The spatial filter, spatial pattern and temporal pattern that correspond to the first
two singular values of the weight matrix are shown.
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The second-order models can also be applied efficiently online in
the case of DS regularization because the coefficient matrix is
typically low rank. We can decompose the second-order weight
Fig. 11. Spatial/temporal profile of the proposed wide-band second-order model atΩDS(θ)=
pattern of the first-order components. The last two rows show the spatial filter and pattern o
the second-order components.
matrixW(2) asW(2)=∑j=1
r λjwj

(2)wj
(2)⊤, wherewj

(2)=∑s−1/2V (:, j)
is a spatial filter as in Discussion section in Results: P300 speller BCI
section, and compute the dot product as 〈W(2), cov(XBP)〉=∑j=1

r

106 (see Fig. 9B). The first two rows show the spatial filter, spatial pattern, and temporal
f the second-order components (7–30 Hz). Note that there is no temporal structure for



Fig. 12. Spatial/temporal profile of the proposed double-band second-order model at ΩDS(θ)=65.0 (see Fig. 9C). The first two rows show the spatial filter, spatial pattern, and
temporal pattern of the first-order components. The last four rows show the spatial filter and pattern of the alpha-band (7–15 Hz) second-order components (rows 3–4) and the
beta-band (15–30 Hz) second-order components (rows 5–6). Note that there is no temporal structure for the second-order terms.
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λjvar(hBP(wj
⊤ Xraw)), where hBP denotes the band-pass filtering and

var denotes the short-time variance estimate.

Discussion on earlier discriminative approaches

In this section we review earlier studies on discriminative
modeling. Major difference arises in the parameterization of the
detector function fθ(X).

Second order feature based BCI

One of themost successful approach inmotor-imagery based BCI is
common spatial pattern (CSP) (see Fukunaga (1990); Koles (1991);
Ramoser et al. (2000) and also Dornhege et al. (2004); Lemm et al.
(2005); Dornhege et al. (2006, 2007); Blankertz et al. (2008) for
various extensions). A commonly used form of CSP based detector
model can be written as follows (Tomioka et al., 2006a; Blankertz et
al., 2008):

fθ Xð Þ =
XJ
j=1

βj log wh

j X
hBjB

h

j Xwj

� �
+ β0; ð17Þ

where X∈RT×C is a short segment of multi-channel EEGmeasurement
with C channels and T sampled time-points; Bj∈RT×T are temporal
filters, wj ∈ RC are spatial filters, {βj}j=1

J
are weighting coefficients of

the J features, and β0 is a bias term. CSP is a dimensionality reduction
method based on a generalized eigenvalue problem (Fukunaga, 1990;
Koles, 1991).

In the conventional CSP based approach, thus the classifier is
trained in three steps. First, the temporal filter coefficients Bj is chosen
a priori or based on some heuristics (Blankertz et al., 2008). Second,
the spatial filter is obtained from solving the generalized eigenvalue



Fig. 13. Comparison of the four features obtained from alpha and beta-bands. The log
powers of the spatially filtered training signals are plotted for the last four spatial filters
shown in Fig. 12. Two filters are obtained from the alpha-band and are shown along the
horizontal axes. Two filters are obtained from the beta-band and are shown along the
vertical axes. Training examples that correspond to left and right hand trials are shown
as blue crosses and green circles, respectively.
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problem. Third, the classifier weights {βj}j=1
J are obtained from

Fisher's linear discriminant analysis.
Several studies used this detector model and related models.

Farquhar et al. (2006) proposed to learn all the above coefficients11

jointly with the hinge loss and the Frobenius norm regularization for
coefficients {wj}j=1

J , {Bj}j=1
J , and {βj}j=1

J . In Tomioka et al. (2007), the
logarithm in Eq. (17) is omitted and two spatial filters wj (j=1, 2) is
optimized under the logistic loss (with the temporal filter coefficients Bj

being kept constant). The resulting model is similar to SOBDA
proposed in Christoforou et al. (2008) (see next subsection).
However these approaches lead to a non-convex optimization
problem which may suffer from multiple local minima and poor
convergence property.

In Tomioka and Aihara (2007), the DS regularization is introduced
and the following model is assumed:

fθ Xð Þ = hW ;XhXi + β0; ð18Þ

where Eq. (18) is obtained from Eq. (17) by omitting the logarithm,
and the temporal filter coefficient Bj (assumed to be constant), and
denoting W=∑j=1

J βjwjwj
⊤. It was demonstrated that using the DS

regularization, good classification performance is obtainedwith only a
few spatial filters wj. Interestingly, the DS regularization typically
chose rank=4 or 5 which roughly corresponds to a common practice
in the CSP based approach (Ramoser et al., 2000).
11 In addition they proposed to jointly learn the temporal windowing function which
is omitted here for simplicity.
First/second-order feature based BCI

Dyrholm et al. proposed the following bilinear detector model
which they call bilinear discriminant component analysis (BDA)
model (Dyrholm and Parra, 2006; Dyrholm et al., 2007):

fθ Xð Þ =
XJ
j=1

uh

j Xυj + β0 = Tr UhXV
� �

+ β0; ð19Þ

where X ∈ RC×T is a short segment of multi-channel EEG measure-
ment with C channels and T sampled time-points; θ=({uj}j=1

J ,
{vj}j=1

J , β0) where U ∈ RC×J and V ∈ RT×J are temporal and spatial
filter coefficients and β0 is a bias term; uj and vj are the j-th row of U
and V , respectively. The number of spatial-temporal filter pairs J is
usually chosen much smaller than C and T.

As the regularizer, the authors used the Frobenius norm on the
coefficients {uj}j=1

J and {vj}j=1
J as follows:

VBDA θð Þ = 1
2

‖U‖
2
F + ‖V‖

2
F

� �
;

where we omit the smoothing kernels used in Dyrholm et al. (2007)
because they can be applied to the signal as X=Kt1/2 Xraw Ks1/2

where Kt and Ks are the smoothing kernels for U and V , respectively.
Note that in contrast to Dyrholm et al., our preprocessing matrices
Ps=∑s−1/4 and Pt=∑t−1/4 (see Signal acquisition and preproces-
sing section) can be interpreted as inverse smoothing of the spatial/
temporal filters if we assume that the input signal is smooth. In fact the
spatial filters that we obtain typically have Laplacian type shapes (see
e.g. Figs. 6–8). However note that it only (approximately) normalizes
the correlation spectrum and it does not emphasize any frequency
component as the true Laplacian operator. We believe that this
inverse smoothing of the coefficients is useful in optimally detecting a
smooth signal such as P300 evoked response, provided that its
correlation structure is well captured in the covariance matrices ∑s

and ∑t. Note that the above mentioned inverse smoothing is
analogous to the ∑−1 term in the well known linear discriminant
analysis (see e.g., Hastie et al. (2001)); linear discriminant coefficient
vector is given as w=∑−1(μ+ − μ−) where the positive (negative)
samples follow normal distributions with mean vector μ+ (μ−) and a
covariance matrix ∑; if we also consider μ+ and μ− as random
variables that have the covariance ∑, then w has the covariance
∑−1. Note also that the preprocessing matrices are calculated from
the whole collection of epochs without any class information; in fact
empirically the estimates are quite stable.

A remarkable fact about the above regularizer is that when J is
sufficiently large the sum of squared Frobenius norms for uj and vj is
equivalent to the DS norm of W i.e.,

‖W‖T =
1
2

min
W=UVh

‖U‖
2
F + ‖V‖

2
F

� �
ð20Þ

where ‖·‖⁎ and ‖·‖F are the DS norm and the Frobenius norm,
respectively (see Srebro et al. (2005)). Thus BDA can be considered
as a fixed-rank approximation of the proposed first-order model
with the DS regularization (see also Recht et al. (2007)). Note
however that typically BDA is used with extremely small J (Dyrholm
et al., 2007; Christoforou et al., 2008) in which case the solutions will
not coincide.

BDA was applied to the self-paced finger tapping dataset from BCI
competition 2003 and a rapid serial visual presentation experiment
(see Dyrholm et al. (2007); Parra et al. (2008)).

Christoforou et al. (2008) extended the first-order BDA (Eq. (19))
and proposed the following second-order BDA (SOBDA) model:

fθ Xð Þ = Tr UhXV
� �

+
XK
k=1

βk wkX
hBBhXwk

� �
+ β0; ð21Þ
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where U ∈ RC×J and V ∈ RT×J are the first-order temporal and spatial
filter coefficients as in Eq. (19) and w ∈ RC and B ∈ RT×T are the
second-order spatial and temporal filter coefficients. They directly
optimized all the coefficients U, V , wk and B with the logistic loss
function and squared Frobenius norm penalty on the coefficients. We
can see that when the temporal filter matrix B is kept constant, Eq.
(21) can be written in the form of Eq. (6) by using the block diagonal
concatenation (Eq. (7)).

Conclusion

In this article we have proposed a novel unified framework for
signal analysis in EEG-based BCI. The proposed framework focuses on
probabilistic predictors from which the decoding and learning
algorithms are naturally deduced. The proposed framework includes
conventional binary single-trial EEG classification as a special case but
it is oriented to the final goal in BCI i.e., to predict the intention of a
user in contrast to the training of a binary classifier as an intermediate
step. This is very much in the spirit of Vapnik (1998): solving the
problem directly instead of an indirect multi-step procedure.
Moreover, the issues of feature learning, feature selection, and feature
combination are addressed through regularization. This allows us to
perform feature learning jointly with the training of the predictor
model in a convex optimization framework. Note that although the
proposed training procedure (Discriminative learning section) might
seem exotic to some EEG practitioners, the resulting detector function
is linear and the decoding procedures (see e.g., Eq. (16)) have the
intuitive forms as in the previous studies (Farwell and Donchin, 1988;
Krusienski et al., 2008).

In the P300 speller problem we have demonstrated how the
learning algorithm derived from a natural predictor model can be
different from the conventionally used binary classification approach.
In fact, we have shown that the epoch-wise normalization imposed by
the conventional approach may make it difficult to find a simple
detector function. Furthermore different regularizers have revealed
different aspects of the localization of the discriminative information.
The spatial localization was investigated through the channel
selection regularizer. Although the number of electrodes did not
significantly reduce without compromising the performance, the
plots have shown strong focus on occipital to central area. The low
performance of the strongly regularized models may be attributed to
volume conduction effects. Even if the source activities are spatially
localized, volume conduction spreads them over a wide area, making
it difficult to recover the activity from a small number of electrodes.
The temporal localization was similarly investigated through the
temporal-basis selection regularizer. Interestingly the temporal
profiles have shown stronger inter-subject variability than the
spatial profile. The dual spectral regularization has revealed both
spatial and temporal profiles in a compact manner. All three
regularizers performed comparable to the winner of the BCI
competition while the dual spectral regularizer being competitive.
However from the point of view of understanding the classifier, the
three regularizers provided complimentary views that made it
possible to find a consistent neurophysiological interpretation for
each subject. The use of, say, the channel selection regularizer alone
would not have allowed us to gain such insights. It is also important
to mention that the complimentary views were particularly useful
in deciding the complexity in plot Figs. 6 and 7. Strongly
regularized predictors tend to be over-simplified and the plots do
not account for the success at the more complex predictors selected
by the cross-validation. On the other hand, the predictor at the
complexity selected by the cross-validation did not always provide
the best intuition.

In the self-paced finger tapping problem we have addressed the
issue of how to learn, select, and combine features from different
sources. We have employed the DS regularization on the augmented
weight matrix. The input feature matrices were concatenated along
the diagonal to form an augmented input feature matrix. The low-
rank factorized predictor obtained from the DS regularization always
outperformed the naive Frobenius norm regularization. Moreover, the
proposedmodel has shown the highest performance in comparison to
the winner of the BCI competition as well as the recently proposed
second-order bilinear discriminant model.

Recent discriminative approaches are also discussed and the
connection between our DS regularization and the sum-of-squared-
Euclidean-norms regularization with fixed number of components
used in (Dyrholm et al., 2007; Tomioka et al., 2007; Christoforou et al.,
2008) is also pointed out. However often these models are used with
only an extremely small number of components in which case the
above equivalence does not hold.

The key idea in our approach is to focus on directly predicting the
intention of a user. This enabled us to approach decoding and learning
in a unified and systematic manner and to avoid intermediate steps.
Note that this idea applies not only to other BCI paradigms including
invasive BCIs but also to general discriminative neurophysiological
paradigms even beyond EEG.

Furthermore we have shown that our discriminative approach can
be considered as a novel visualization technique of the brain activity
of a subject during tasks since it focuses on the basic components that
are useful in predicting the intention of the subject. It reveals themost
relevant piece of discriminant information in the subject's brain
activity. Other types of decomposition problems such as multi-way
tensor factorization (Harshman, 1970; Mørup et al., 2008)may also be
tackled in a similar manner from the discriminative point of view
considered in this work.
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Appendix A. Details of the algorithm

We used the projected gradient method described in Kim et al.
(2006); Tomioka and Sugiyama (2008) for the optimization of Eq.
(3) with the DS regularizer (Eq. (11)). The efficiency of the projected
gradient method varies depending on the regularization constant C;
it is faster for strong regularization (small C) and slower for weak
regularization (large C.) For the P300 problem in Results: P300
speller BCI section, it takes about 5–6 min to obtain the solution for a
single regularization constant around the best value C ≃ 5 on a
workstation with two 3.3 GHz dual core Xeon processors and 8GB of
RAM.

The channel selection regularizer and the temporal-basis selection
regularizer (Eqs. (9) and (10)) are rewritten into the following linear
penalty formulation:

minimize
θ

Ln θð Þ + λV θð Þ; ð22Þ

and the steepest descent subgradient method described in Andrew
and Gao (2007) (see also Yu et al. (2008)) was used for the
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optimization with 20 log-linearly spaced candidates of λ from the
interval [0.01, 100]. The above formulation is equivalent to Eq. (3) in
the sense that for any regularization constant C if the solution of
Eq. (3) is unique, then there is a λ N 0 in Eq. (22) that yields the same
solution with Ω(θ)=C; conversely for any λN0, Eq. (3) with
C=Ω(θ⁎) gives the same solution, where θ⁎ is the solution of Eq.
(22) for the given λ.

For the Frobenius norm regularizer (Eq. (8)), we rewrite Eq. (3)
into the following squared penalty formulation:

minimize
θ

Ln θð Þ + λ‖W‖
2
F ;

and the limited memory BFGS method (Nocedal and Wright, 1999)
was used. The above squared norm formulation is again equivalent to
Eq. (3).

We have recently been developing a new optimization algorithm
for all the sparse regularizers in the linear penalty formulation (Eq.
(22)) (Tomioka and Sugiyama, in press). The code is also available
from http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/. However the new
algorithm is still an early release still to be improved; note that this
novel optimizer was not used for the computation of the results in this
paper.
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