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Adapting Spatial Filtering Methods for Nonstationary BCIs
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Abstract: A major challenge in applying machine learning methods to Brain-Computer
Interfaces (BCIs) is to overcome the possible nonstationarity in the data from the dat-
ablock the method is trained on and that the method is applied to. Assuming the joint
distributions of the whitened signal and the class label to be identical in two blocks, where
the whitening is done in each block independently, we propose a simple adaptation formula
that is applicable to a broad class of spatial filtering methods including ICA, CSP, and
logistic regression classifiers. We characterize the class of linear transformations for which
the above assumption holds. Experimental results on 60 BCI datasets show improved
classification accuracy compared to (a) fixed spatial filter approach (no adaptation) and
(b) fixed spatial pattern approach (proposed by Hill et al., 2006 [1]).

1 Introduction
Brain-Computer Interfaces (BCIs) are devices that

translate the intent of a subject measured from brain
signals directly into control commands, e.g. for a com-
puter application or a neuroprosthesis [2]. We focus
on EEG based imaginary movement BCIs. From the
machine learning point of view, the task is to predict
the class of imagination y from the EEG signal X of
a single trial based on training examples {Xi, yi}n

i=1.
Consider a situation when a classifier is trained on one
block of recording and then applied to another block.
A potential drawback is that the characteristic of the
signal can be considerably affected by altered mental
states with respect to, e.g., concentration or excited-
ness, variable demands in visual processing, or changes
in the impedance of the electrodes. The challenge is
to adapt the classifier which is optimized on the first
block to the second block. If one could access the labels
in the second block, the problem becomes considerably
easier. However, in practice, especially in online BCI
experiments, the real intention of the controller is un-
known to the system. Therefore, we restrict ourselves
to accessing only the marginal distribution of X, in
particular to the estimation of the covariance matrix
Σ2 on the new datablock. Such an adaptation is a
highly important step, since the calibration measure-
ment is typically a repetitive task without feedback,
in which the richness of available stimuli and the sub-
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ject’s level of arousal are relatively low, in contrast to
the more dynamic phase of the actual BCI operation.

This study was conducted within the Berlin Brain-
Computer Interface (BBCI) project which develops an
EEG-based system operating on the spatio-spectral
changes during different kinds of motor imagery. The
BBCI uses machine learning techniques to adapt to the
specific brain signatures of each user ([3]).

2 Materials
For the demonstration of the proposed method we

will use 60 EEG datasets from 20 experiments recorded
from 16 subjects (some subjects took part in more than
one experiment). In each experiment subjects per-
formed trials of cued imaginary movements with an
inter-cue interval of 6-7s. There was no feedback given
in these recordings. The subjects performed one of the
three imaginary movements namely, left(L), right(R),
or foot(F) for 3-3.5s in each trial. There were two
different blocks of measurements; in the block called
“lett”, subjects were fixating at the center of the screen
and the instruction of the imaginary movement he/she
should perform was given as the corresponding letter
fixed at the center of the screen. On the other hand,
in the “move” block, subjects were fixating at a cur-
sor randomly bouncing inside the screen (the move-
ment being uncorrelated with the required task). The
instruction was given as the change in the shape of
the cursor. For most subjects, both blocks contained
equally 70 trials for each class, but for some subjects
it was 35 trials in the first block and 105 trials in the
second block (or the other way around). Since we con-
centrate on the binary classification problem, 20 exper-
iments produced 60 datasets by taking all the binary
combination of three classes.

A first inspection of the datasets reveals a system-
atic difference of brain activity during the “lett” and
the “move” blocks: the log band-power (7-30Hz) shows
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Figure 1: The upper scalp maps show the average
log band-power (7-30Hz) in the datasets “lett” and
“move” calculated by taking the log-variance of the
band-pass filtered signals. The maps in the lower row
show the trial-to-trial standard deviation of log band-
power. The maps are calculated for one representative
subject with good BCI performance.
a much stronger parietal activity during “lett” com-
pared to “move”, see upper row of Figure 1. Similarily
the variation of log band-power is larger in that area,
as can be seen in the lower rows of Fig. 1.

3 Spatial filtering methods
Let X ∈ Rd×T be the EEG signal of a single trial

with d channels and T sampled time points1. We con-
sider a binary classification problem where each class,
e.g. right or left hand imaginary movement, is called
positive (+) or negative (−) class. Let y ∈ {+1,−1}
be the class label. Given a set of trials and labels
{Xi, yi}n

i=1, the task is to predict the class label y for
an unobserved trial X.

In this section, we show two examples of single trial
EEG classification methods that the proposed adapta-
tion method can be applied, namely, Common Spatial
Pattern (CSP) [4] and the logistic regression classifier
with rank=2 approximation [5].

3.1 Common spatial pattern

Common Spatial Pattern (CSP) [4] is a spatial fil-
tering method widely used in motor imagination based
BCIs [6, 3], where the task is to classify two different
state of brain activity, e.g., imagining the movement
of the left or the right hand. In this context, the event
related (de-)synchronization (ERD/ERS; [7]) of rhyth-

1For simplicity, we assume that the DC component is already
subtracted and the signal is scaled by the inverse square root of
the number of time-points. This can be achieved by a linear
transformation X = 1√

T
Xoriginal

`

IT − 1
T

11T
´

.

mic brain activity is a widely used and well studied
physiology. The EEG signal is commonly band-pass fil-
tered around µ- (7-15Hz) and/or β- (15-30Hz) rhythms
and two covariance matrices Σ(+) and Σ(−) are calcu-
lated for the two classes. CSP tries to find a spatial
filter w ∈ Rd that maximizes the difference in the av-
erage band power of the filtered signal while keeping
the sum constant.

max
w

wT(Σ(+) − Σ(−))w, (1)

s.t. wT(Σ(+) + Σ(−))w = 1.

The problem can be solved through a generalized eigen-
value problem:(

Σ(+) − Σ(−)
)

W =
(
Σ(+) + Σ(−)

)
WΛ. (2)

The matrix of generalized eigenvectors W ∈ Rd×d are
written as W = PR where P = (Σ(+) +Σ(−))−1/2 and
R is the eigenvector of PT(Σ(+)−Σ(−))P . It is easy to
see that with the eigenvector r1 corresponding to the
largest eigenvalue, the optimum of the above problem
is obtained as w∗ = Pr1.

The CSP based classifier has the following form,

fCSP(X; W,α) =
p∑

j=1

αj log wT
j XXTwj + α0.

Here the classifier is trained in two stages. First, we
take p = 2nof columns of W from the generalized
eigenvalue decomposition (Eq. (2)), namely eigenvec-
tors corresponding to nof largest and smallest eigen-
values. Second, the coefficients {αj}2nof

j=0 are learned
through linear discriminant analysis (LDA).

3.2 Logistic regression classifier with
rank=2 approximation

The logistic regression classifier [5] is also a method
developed for ERD based motor imaginary BCI. The
key idea in CSP, which is to classify two classes of zero
mean time series with different covariance matrices, is
formulated in a more principled manner in a logistic
regression framework. In [5] the rank=2 approxima-
tion of the symmetric logit transform of the posterior
class probability logP (y = +1|X)/P (y = −1|X) is
proposed.

f(X; θ) =
1
2
tr

[(
−w1w

T
1 + w2w

T
2

)
XXT

]
+ b, (3)

where θ := (w1, w2, b) ∈ Rd × Rd × R. The function
f(X; θ) is optimized in a regularized maximum likeli-
hood problem,

min
w1,w2∈Rd,b∈R

1
n

n∑
i=1

log
(
1 + e−yif(Xi; θ)

)
+

C

2
(
wT

1 Σ1w1 + wT
2 Σ1w2

)
, (4)



where Σ1 is the covariance matrix of X.
Note that for the above two methods the invariance

to linear transformation holds, which forms the basis
of the proposed normalizing approach for spatial filter
adaptation (see Sec. 4.1).

Remark 1 The above two methods satisfies the fol-
lowing property: when the data X is transformed as
X̃ = AX, the optimal spatial filter W is transformed
as W̃ = A−TW , where A−T =

(
A−1

)T.

The above invariance holds for broad class of well be-
having linear spatial filtering methods, for example In-
dependent Component Analysis (ICA).

Furthermore, the following decomposition is possi-
ble for the above two methods, which forms the basis
of fixed spatial pattern approach (see Sec. 4.2 and [1]).

Remark 2 The filter coefficient matrix W ∈ Rd×p in
the above two methods can be decomposed as follows

W = PRD. (5)

Here, P = Σ−1/2
1 ∈ Rd×d is the whitening part, where

Σ1 = 1
n

∑n
i=1 XiX

T
i is the covariance matrix of the

signal X on the datablock the method is trained on;
R ∈ Rd×p is a set of p orthonormal vectors in Rd (or-
thogonal part); D ∈ Rp×p is a diagonal matrix (scal-
ing).

Proof: For CSP, the proof is trivial. For the logis-
tic regression classifier, one can easily see that the
problem (4) can be considerably simplified by trans-
forming the variables as W = [w1, w2] = PW̃ with
a whitening matrix P = Σ−1/2

1 and optimizing on
W̃ = [w̃1, w̃2] ∈ Rd×2.

min
w̃1,w̃2∈Rd,b∈R

1
n

n∑
i=1

log
(

1 + e−yif(X̃i; θ̃)
)

+
C

2
(
‖w̃1‖2 + ‖w̃2‖2

)
, (6)

where X̃ = PX and θ̃ = (w̃1, w̃2, b). Furthermore
when the regularization constant C > 0, it is shown
in the following lemma that the optimal W̃ can be
decomposed as W̃ = RD, which completes the proof.

¤

Lemma 3 In the whitened version of logistic regres-
sion with rank=2 approximation (Eq. (6)), for every
W̃ , one can find a “orthogonalization” W̃o = W̃B =
RD with R = [r1, r2] ∈ Rd×2 that satisfies RTR = I2

and a diagonal matrix D ∈ R2×2 without changing the
function (3), i.e., ∀X, f(X; W̃ , b) = f(X; W̃o, b). Fur-
thermore, the orthogonalization always decreases the
regularization term in Eq. (6).

Proof: See Appendix.

4 Adaptation methods
4.1 Normalizing approach

We assume the following (the assumption is justi-
fied empirically in Sec. 5),

Assumption 1 The joint distributions of the whitened
signal Z = Σ−1/2X and the label y, namely PZ,y(Z, y)
are identical in both datablocks, i.e.,

P
(1)
X,y

(
Σ1/2

1 Z, y
) ∣∣∣Σ1/2

1

∣∣∣ = P
(2)
X,y

(
Σ1/2

2 Z, y
) ∣∣∣Σ1/2

2

∣∣∣ ,

where P
(1)
X,y and P

(2)
X,y are the probability densities of

the datablock the method is trained on and that it is
applied to, respectively and Σ1 and Σ2 are covariance
matrices similarly defined.

Thus, in order to predict the label for an unobserved X
from the second block, the classifier should be trained
on {Σ1/2

2 Σ−1/2
1 Xi, yi}n

i=1 instead of {Xi, yi}n
i=1. In the

case of the spatial filtering methods described in Sec. 3,
because they are invariant to linear transformation (see
Remark 1), one only needs to transform the spatial
filter W according to the following adaptation formula,
which we call the normalizing approach:

Wadapt = Σ−1/2
2 Σ1/2

1 W. (7)

Note that Eq. (7) corresponds to keeping the orthog-
onal part R and replacing the whitening part P with
the new whitening Σ−1/2

2 in Eq. (5), which is the direct
consequence of Assumption 1. In fact, the following
statement holds,

Remark 4 For a spatial filtering method that satisfies
Remarks 1 and 2, the orthogonal part R in Eq. (5) is
kept constant to a linear spatial transformation if and
only if the transformation is written as follows X̃ =
CΣ−1/2

1 X, where C is an arbitrary symmetric positive
definite matrix.

The proof is trivial. However, it must be noted that
the invariance to linear transformation (Remark 1)
does not imply that the classifier trained on the first
block can be applied to the second datablock that is
transformed with an arbitrary linear transformation;
in general the transformation A in Remark 1 cannot
be assessed without the labels on the second block;
Remark 4 identifies the special class of linear transfor-
mations that the transformation can be assessed only
from the estimation of covariance matrix Σ2 on the
second block.

In this paper, we use the batch estimation of Σ2 on
the whole test block; one can also estimate Σ2 in an
online manner. We call our method the normalizing
approach because it normalizes the covariance of each
measurement block independently to identity.



4.2 Fixed spatial pattern approach

The fixed spatial pattern (FSP) approach proposed
in [1] assumes that the task relevant (or discriminative)
columns of A = W−T, namely A[r] ∈ Rd×p are kept
constant while allowing irrelevant columns to change.
Throughout this paper, we refer to each column of A
as spatial pattern corresponding to the same column of
W , which we call spatial filter, because they correspond
one-to-one by a transformation,

A = Σ1WD−2. (8)

The above principle gives the following adaptation rule
for the filter (derivation see below),

W
[r]
adapt = Σ−1

2 Σ1W
[r]

(
W [r]TΣ1Σ−1

2 Σ1W
[r]

)−1

×
(
W [r]TΣ1W

[r]
)

,

(9)

where W [r] = Σ−1
1 A[r]D2 are the filters corresponding

to the task relevant patterns A[r]. In CSP, the task
relevant components are chosen according to the mag-
nitude of the eigenvalues of the generalized eigenvalue
problem (Eq. (2)) as described in Sec. 3.1. In the lo-
gistic regression classifier, setting W = [w1,w2] in the
right hand side of Eq. (8) gives the pattern A ∈ Rd×2

to be preserved. Equation (9) is derived according to
the method described in [1] as follows:
Derivation of Eq. (9): We first split patterns into task-
relevant part and irrelevant part A =

[
A[r], A[i]

]
, which

has the following form under the new whitening P2 =
Σ−1/2

2 ,

A2 = P−1
2 [C,U ] ,

where C is called the constrained part, which should
satisfy the following

A[r] = P−1
2 C, (10)

and U is the unconstrained part. We assume that C
and U are orthogonal subspaces. Then, the filter can
be written as follows:

Wadapt = A−T
2 = P2 [C,U ]−T

= P2

[
C(CTC)−1, U(UTU)−1

]
.

The task-relevant part of the adapted filter can be writ-
ten without the unconstrained part. Using Eq. (10) we
have,

W
[r]
adapt = P 2

2 A[r](A[r]TP 2
2 A[r])−1.

Finally, substituting P 2
2 = Σ−1

2 , Eq. (8) and D2 =
W [r]TΣ1W

[r], we obtain Eq. (9).

¤

5 Results
We evaluate the following three approaches for spa-

tial filter adaptation, namely (a) fixed spatial filter
(FSF) approach, in which no adaptation is performed
as baseline, (b) fixed spatial pattern (FSP) approach
(Eq. (9); see also [1]) and (c) the normalizing ap-
proach (Eq. (7)). As the spatial filtering methods to
be adapted, we choose CSP (Eq. (1)) and logistic re-
gression with rank=2 approximation (Eq. (4)).

We band-pass filter the EEG signals from the 60
datasets described in Sec. 2 at the µ- and β-range, i.e.
7-30Hz and cut out the 500-3500ms interval after the
appearance of visual stimuli as a trial X. Signals were
sampled at 1000Hz but down-sampled to 100Hz before
processing.

In each dataset, we trained a classifier on one of the
two datablocks and try to adapt the classifier based
only on additionally estimating the covariance matrix
of the other datablock. No label information is used.
We evaluated the adaptation methods on both di-
rections, namely, “lett”→”move” and “move”→”lett”.
The parameter nof = 3 is used for CSP. The regulariza-
tion constant C for the logistic regression classifier is
chosen by 2×10 cross validation on the training block.

Figure 2 shows the results of adapting CSP. The
upper row shows the results of “lett”→”move” and
the lower row shows the results of “move”→”lett”.
The bitrate of a pair of methods are plotted for each
dataset. Here, bitrate (per decision) is defined based
on the classification test error rate perr as the capac-
ity of a binary symmetric channel with the same error
probability: 1−

(
perr log2

1
perr

+ (1 − perr) log2
1

1−perr

)
.

The first column in Fig. 2 compares the normalizing
approach to FSF approach. The second column com-
pares the normalizing approach to FSP approach. The
normalizing approach clearly outperforms FSF in the
case of “move”→”lett”, however the improvement is
not clear in the case of “lett”→”move”. The normaliz-
ing approach appears favorable to FSP in both cases.

Figure 3 shows the same comparison for the logistic
regression classifier. A similar characteristics can also
be seen here: the improvement of the normalizing ap-
proach is much clearer in the “move”→”lett” situation.
In addition, FSP also shows much better performance
in the “move”→”lett” situation.

6 Discussion
Why do we see more improvements for “move”

→ ”lett” than “lett”→“move”? The “lett” block
contains increased parietal α-activity and also more
variability in that area, see Fig. 1. Since this variabil-
ity is uncorrelated to the task, a classifier trained on
“lett” becomes invariant to those variations. On the
other hand, a classifier trained on “move” might fail to
become invariant in this respect due to the lack of vari-
ation in the training data and then fail on block “lett”.
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(d) Comparison of the nor-
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Figure 2: Adaptation of CSP (see Sec. 3.1).

Why isn’t the effect of increased α-activity lo-
calized in a CSP component? There are two pos-
sible reasons. First, if the occipital α-activity, which
mainly arises from the visual cortex is statistically in-
dependent from the task relevant sources in the mo-
tor cortex, the task relevant components of W from
ICA will not depend on the the α-activity. How-
ever, this may not be case for CSP; because the la-
bels are taken into account, CSP components are clas-
sification biased. Second, as considered in [1] if the
change in the α-activity involves a linear transforma-
tion of a task-irrelevant subset of columns of A, the
effect will not be localized in the corresponding subset
of W = A−T. Why is the proposed normaliza-
tion approach more stable than FSP? Comparing
Eq. (7) to Eq. (9), one can see that the major correc-
tion term is Σ−1/2

2 Σ1/2
1 for the proposed approach and

Σ−1
2 Σ1 for FSP. Because the correction of scale is of

the order 1/2 instead of 1, the risk of overly correcting
the shift when the actual shift is small, is smaller in
the proposed method. Why is keeping the filter
or the pattern not appropriate? It can be con-
jectured that because both depends on the whitening
part P = Σ−1/2, which is influenced by difference in
the scale of the signal from a datablock to another.
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Figure 3: Adaptation of the logistic regression classifier
(see Sec. 3.2).

Fig. 4 shows logistic regression (Eq. (3)) coefficients
topographically mapped on a head viewed from top
(nose pointing up). In this dataset, w1 and w2 are
called “left” filter and “right” filter because they have
large response in the “left hand” and “right hand” mo-
tor imagination, respectively. Both the coefficients ob-
tained from “lett” block and “move” block are shown.
Three rows corresponds from top to bottom (1) the
filter (W = Σ−1/2R) (2) the orthogonal part (R) and
(3) the pattern (A = Σ1/2R). The scaling coefficient
D is omitted. One can see that although the orthogo-
nal parts (the middle row) are mainly focusing on the
motor area, the patterns (the bottom row) have broad
spread in the occipital direction, which is substantially
different from “lett” block to “move” block, reflecting
the variability in the activity in this area. The filters,
which have to compensate for this activity, also seem
to be different from “lett” block to “move” block.

7 Summary
We have proposed a novel formula for adapting a

spatial filtering method which is trained on a block of
recording and being applied to another block which
possibly has a different distribution. The formula can
be applied to broad class of spatial filtering methods
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Figure 4: The filters, the orthogonal part, and the
patterns from two different blocks of recording “lett”
and “move” for the same subject in the same day us-
ing logistic regression with rank=2 approximation (see
Sec. 3.2 and [5]).

for BCI, e.g., ICA, CSP or the logistic regression clas-
sifier and requires no label information on the test set;
only the covariance matrix of the new data is required.
The formula is equivalent to datablock-wise normal-
ization by whitening transformation. The underlying
assumption that the joint distribution of the whitened
signal and the label is kept unchanged was tested on
60 BCI datasets. The result shows a improved clas-
sification compared to FSF approach (no adaptation)
and FSP adaptation, which preserves the task-relevant
“patterns”, i.e., a subset of columns of the inverse fil-
ter matrix corresponding to task-related components.
In fact, the orthogonal part seems to be relatively pre-
served even under a large change in the filter and the
pattern (see Fig. 4). At the moment, the method uses
batch estimation of covariance matrix on the whole
test block. In order to apply the method in the BCI
feedback experiment, the estimation has to be done in
an online manner. Theoretical justification of Assump-
tion 1 is also necessary.

Appendix: Proof of Lemma 1

There exists A ∈ R2×2 that satisfies the following
two conditions,

ATW̃TW̃A = I2,

A−1

(
−1 0
0 1

)
A−T =

(
−d2

1 0
0 d2

2

)
,

because W̃TW̃ is a positive definite matrix and the left
hand side of the second equation is symmetric. Then,
the following holds,

−w̃1w̃
T
1 + w̃2w̃

T
2 = W̃

(
−1 0
0 1

)
W̃T

= W̃AA−1

(
−1 0
0 1

)
A−TATW̃T

= R

(
d1 0
0 d2

)(
−1 0
0 1

)(
d1 0
0 d2

)
RT.

Here R = W̃A satisfies RTR = I2 from the first condi-
tion. Therefore, letting B = A

(
d1 0
0 d2

)
we have the first

part of the lemma. In order to prove the second part,
let us write A−1 =

(
a b
c d

)
. From a simple calculation,

A−1
(−1 0

0 1

)
A−T =

(
−a2+b2 −ac+bd
−ac+bd −c2+d2

)
=

(
−d2

1 0

0 d2
2

)
.

Furthermore, since R is orthogonal,

‖w̃1(o)‖2 + ‖w̃2(o)‖2 = d2
1 + d2

2

= a2 − b2 − c2 + d2 ≤ a2 + b2 + c2 + d2

= tr
[
A−TA−1

]
= tr

[
W̃TW̃

]
= ‖w̃1‖2 + ‖w̃2‖2. ¤
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