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Abstract

We propose a general regularized empirical risk minimization framework for
sparse learning which accommodates popular regularizers such as lasso, group
lasso, and the trace norm. Within this framework, we develop two optimization
algorithms. The first method is based on squared penalties added to the empirical
risk and is solved using a subgradient-based L-BFGS quasi-Newton method. The
second method is based on constraints imposed on sparsity-inducing norms and is
solved using a gradient projection method. A notable advantage of our approaches
is that a simple way to access the dual objective value is available, which is use-
ful in tracking the progress of optimization and deciding when to terminate the
optimization procedure.

1 Introduction

Convex regularizers that induce sparsity (e.g., lasso [1], group lasso [2], and trace norm [3, 4, 5])
are useful tools in many applications especially when the interpretability of the learned model is
important. They can be used in combination with various convex loss functions. Optimization is
convex, which contrasts strikingly to the non-convexity of feature selection in general.

In this paper we focus on the combination of general differentiable convex loss functions and the
trace norm regularization. The trace norm1 is used to reduce the rank of a coefficient matrix in
collaborative filtering, multi-input multi-output prediction, and classification over matrices. So far
there is no optimization method other than the interior-point method [5, 7], which often scales badly
for dense input data, that solves this problem rigorously. Our goal is to generalize recently pro-
posed algorithms for lasso and group lasso to trace norm regularization. In fact considerable effort
has been recently made for lasso and group lasso problems. Main difficulty arises from the non-
differentiability of these regularizers. Orthant-wise limited-memory quasi-Newton method (OWL-
QN) [8] solves the lasso regularization; it uses the steepest descent subgradient (see also [9]) in the
L-BFGS quasi-Newton method [10] with a specialized line search that takes the discontinuity of the
curvature into account. Roth&Fisher [11] proposed an active set method for group lasso regulariza-
tion; it uses a gradient projection method suggested in [12] and efficiently identifies a small set of
active components and avoids solving a larger problem than actually needed.

Our contributions in this paper are the following three: (i) we propose a general framework that
enables us to unify these three sparsity inducing regularizers as special cases ofdual norm regular-
ization; (ii) we propose two formulations that enable us to access theduality gap, which is useful
in tracking the progress of the algorithm and deciding when to terminate the algorithm; (iii) we
provide practical implementations of the two formulations. The first formulation, which we call the

∗Part of this work was done while RT was with Fraunhofer FIRST.
1It is also known as the dual spectral norm [3], nuclear norm [6], and Ky Fanr-norm [7].
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squared penalty formulationis solved with a generalized version of OWL-QN [8] for the trace norm
that uses steepest descent subgradients in the L-BFGS quasi Newton method (Sec.2.1); the second
formulation, which we call thenorm constraint formulationis solved with the gradient projection
method [13], which is suggested for group lasso in [12] (Sec.2.2).

A motivating example. In many previous studies (e.g., [1, 2, 5]), linear norm penaltiesare used
in empirical risk minimization framework in order to enforce different types of sparsity. In order to
show that there is no straightforward way of assessing the duality gap in this conventional formula-
tion, we present the primal and dual problems of lasso (ℓ1-) regularization as follows:

(Plasso
0 ) minimize

w∈Rd,{zi}n
i=1

n∑
i=1

ℓi(zi) + λ0∥w∥1, subject to zi = xi
⊤w (i = 1, . . . , n).

(Dlasso
0 ) maximize

{αi}n
i=1

−
n∑

i=1

ℓ∗i (αi), subject to ∥
∑n

i=1 αixi∥∞ ≤ λ0.

Here we consider a linear modelz = x⊤w, which is parameterized with the weight vectorw ∈ Rd;
the empirical risk is measured by smooth convex loss functionsℓi (e.g., logistic regression) atn
input pointsxi ∈ Rd (i = 1, . . . , n). Note that the labels in a standard supervised learning problem
is absorbed into the definition ofℓi. ∥ · ∥1 and ∥ · ∥∞ are ℓ1- and ℓ∞-norms, respectively.αi

(i = 1, . . . , n) are Lagrangian multipliers associated with the equality constraints in(Plasso
0 ). ℓ∗i

is the Legendre transformation ofℓi; i.e., ℓ∗i (αi) := maxz′
i(⟨αi, z

′
i⟩ − ℓi(z′i)) . Thus due to the

differentiability of the loss functionℓi, there is a natural mapping betweenzi andαi as follows:

αi =
∂ℓi(zi)

∂zi
and zi =

∂ℓ∗i (αi)
∂αi

. (1)

This mapping suggests that the quantity in the constraint in the dual problem(Dlasso
0 ) is the gradient

of the primal loss term. However we cannot use this mapping to obtain the dual objective value in
the linear penalty formulation(Plasso

0 ). In fact, αi obtained using the mapping (Eq. (1)) does not
satisfy the dual constraint in general.

There are two formulations with unconstrained dual problems in which we can use the mapping
(Eq. (1)) in order to access the dual objective value. The first is thesquared penalty formulationas
follows:

(Plasso
sq ) minimize

w∈Rd,{zi}n
i=1

n∑
i=1

ℓi(zi) +
λ

2
∥w∥2

1, subject to zi = xi
⊤w (i = 1, . . . , n),

(Dlasso
sq ) maximize

{αi}n
i=1

−
n∑

i=1

ℓ∗i (αi) −
1
2λ

∥
∑n

i=1 αixi∥
2

∞ ,

The other is thenorm constraint formulationas follows:

(Plasso
con ) minimize

w∈Rd,{zi}n
i=1

n∑
i=1

ℓi(zi), subject to ∥w∥1 ≤ C, zi = xi
⊤w (i = 1, . . . , n),

(Dlasso
con ) maximize

{αi}n
i=1

−
n∑

i=1

ℓ∗i (αi) − C ∥
∑n

i=1 αixi∥∞ .

In the next section, we generalize these formulations for general sparsity-inducing norms and solve
them using the subgradient L-BFGS method (Sec.2.1) and the gradient projection method (Sec.2.2),
respectively.

2 General sparse learning framework

In this section, we consider the above mentioned two formulations for general sparsity-inducing
norms that include lasso, group lasso, and trace norm regularization as special cases. In the squared
penalty formulation, the key idea is to define these norms asdual normsof other norms; this enables
us to compute the subdifferential of the norms in a systematic manner. The dual norm∥ · ∥∗ of a
norm∥ · ∥ is defined as∥w∥∗ = maxq∈Rd, ∥q∥≤1 ⟨q, w⟩. In the norm constraint formulation, there
is an efficient algorithm that computes the projection with the trace norm constraint as well as lasso
and group lasso constraints (see Sec.3).
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2.1 Squared penalty formulation

We consider the following regularized empirical risk minimization problem:

(Psq) minimize
w∈Rd,{zi}n

i=1

n∑
i=1

ℓi(zi) +
λ

2
∥w∥2

∗,

subject to zi = xi
⊤w (i = 1, . . . , n),

We can considerw to be a vector, a vectorized matrix, or a matrix, which correspond, e.g., to stan-
dard classification, classification over matrices, and multiclass classification, respectively. Similarly
the inputxi can be a vector, a vectorized matrix, or a matrix. Note that we denote by∥ · ∥∗ the norm
that measures the complexity (ℓ1-norm in lasso) as the dual norm of∥ · ∥ (ℓ∞-norm in lasso). The
dual problem of the above optimization problem(Psq) can be written as follows:

(Dsq) maximize
{αi}n

i=1

−
n∑

i=1

ℓ∗i (αi) −
1
2λ

∥∥∥∥∥
n∑

i=1

xiαi

∥∥∥∥∥
2

,

whereαi is the Lagrangian multiplier associated with the equality constraints in(Psq) and has the
same dimensionality aszi. Now using the mapping in Eq. (1), the dual objective value can be readily
calculated. We define the primal objective functionf sq(w) by substituting the “subject to” line into
the objective functions in(Psq) and the dual objective functiongsq({αi}n

i=1) as in(Dsq).

In general, when a convex functionf is non-differentiable at a pointw0, the gradient atw0 is not
uniquely defined. A subgradientg is the normal vector of a tangent plane off atw0 as follows:

f(w) ≥ f(w0) + ⟨g, w − w0⟩ ∀w ∈ Rd.

The subdifferential∂f(w0) is the set of all the subgradients atw0. The directional derivative
∇df(w0) in the directiond can be computed as follows:

∇df(w0) = max
g∈∂f(w0)

⟨g, d⟩ .

Thus the steepest descent directionds is obtained as follows:

ds = argmin
∥d∥2≤1

max
g∈∂f(w0)

⟨g, d⟩ = − argmin
g∈∂f(w0)

∥g∥2, (∥ · ∥2 is the Euclidian norm)

becausemin∥d∥2≤1 maxg∈∂f(w0) ⟨g,d⟩ = maxg∈∂f(w0) min∥d∥2≤1 ⟨g, d⟩ = maxg∈∂f(w0)(−∥g∥2).
We callgs = argming∈∂f(w0) ∥g∥2 the steepest descent subgradient.

We solve the primal problem(Psq) using the steepest descent subgradient in L-BFGS quasi New-
ton method as in [8] (see [9] for the general case in which the steepest descent subgradient is not
necessarily available). The dual norm formulation is particularly useful in explicitly writing the
subdifferential off(w) and finding the steepest descent subgradient. In fact, the subdifferential of
a function defined as the point-wise maximum of linear functions is the set of maximizers at each
point [13]. The subdifferential∂f sq(w) of the primal objectivef sq(w) is an affine transformation
of ∂∥w∥∗ as follows:

∂f sq(w) = gℓ + λ∥w∥∗∂∥w∥∗, (2)

with gℓ =
∑n

i=1 ∂ℓi(xi
⊤w)/∂w. Note that even when−gs is a descent direction,d = −Bgs may

not be a descent direction (B is an approximate inverse Hessian), because the directional derivative
∇df(w)(≥ ⟨gs, d⟩) can be positive in general; we may switch to gradient descent in this situation
because we have the steepest descent direction; the direction-finding algorithm proposed in [9] can
also be used.

Remark The proposed formulation is equivalent to the conventional formulation that usesλ′∥w∥∗
as the penalty term instead ofλ∥w∥2

∗. In fact the subdifferential of the primal objective function in
the conventional formulation can be written asgℓ + λ′∂∥w∥∗ with gℓ =

∑n
i=1 ∂ℓi(xi

⊤w)/∂w;
comparing this expression with Eq. (2), we see that two regularization constants are mapped as
λ′ = λ∥w∥∗. However our formulation enables us to quickly access the duality gap.
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2.2 Norm constraint formulation

The norm constraint formulation for general sparsity-inducing norm∥ · ∥∗ is written as follows:

(Pcon) minimize
w∈Rd,{zi}n

i=1

n∑
i=1

ℓi(zi),

subject to ∥w∥∗ ≤ C, zi = xi
⊤w (i = 1, . . . , n),

and its dual problem can be written as follows:

(Dcon) maximize
{αi}n

i=1

−
n∑

i=1

ℓ∗i (αi) − C

∥∥∥∥∥
n∑

i=1

xiαi

∥∥∥∥∥ .

We define the primal objective functionf con(w) by substituting the “subject to” line into the objec-
tive functions in(Pcon) and the dual objective functiongcon({αi}n

i=1) as in(Dcon).

In this formulation, there is no need to consider the subgradient in order to solve the primal problem
(Pcon) because the primal objective function is differentiable. However, we need to make sure that
the iterates stay feasible. To this end, we use the gradient projection method [13] which is suggested
for group lasso [12]. That is we first take a negative gradient step with a step-sizesg: ŵ := wt−sgg
and projectŵ to the constraint set by solving the following minimization problem:

minimize
w∈Rd

∥w − ŵ∥2, subject to ∥w∥∗ ≤ C. (3)

This minimization problem can be efficiently solved for the trace norm as well as lasso and group
lasso (see Sec.3).

3 Trace norm regularization

In this section, we specialize the above formulations to the trace norm regularization; the weight
vectorw is seen as a matrix of sizedr × dc (d = drdc). We define the trace norm as the dual norm
of the spectral norm [6] as follows:

∥w∥∗ := max
q∈Rdr×dc

⟨q, w⟩ s.t. ∥q∥ := max
j

σj(q) ≤ 1,

whereq ∈ Rdr×dc andσj(q) is thej-th singular value ofq; thus∥q∥ is the spectral norm ofq. The
above dual norm view is particularly useful in computing the steepest descent subgradient as we see
below.

3.1 Subdifferential and the steepest descent subgradient
Subdifferential of the trace norm can now be computed as the set of maximizers{g} that achieve
⟨g, w⟩ = ∥w∥∗. Noting that the maximizer is not unique in the null space ofw, we can write the
subdifferential as follows:

∂∥w∥∗ =
{

g = u1v1
⊤ + u0cv0

⊤ ∈ Rdr×dc : w = u1σv1
⊤, u0 ⊥ u1, v0 ⊥ v1,

c = diag(c1, . . . cr0), cj ∈ [0, 1] (j = 1, . . . , r0)
}

,

wherew = u1σv1
⊤ is the singular value decomposition ofw ∈ Rdr×dc with u1 ∈ Rdr×r, v1 ∈

Rdc×r, andσ ∈ Rr×r, andr is the rank ofw (i.e.,diag(σ) > 0); the singular vectorsu0 ∈ Rdr×r0

andv0 ∈ Rdc×r0 , wherer0 = min(dr, dc)−r, corresponding to the zero singular values can be any
orthonormal set of vectors that are orthogonal tou1 andv1, respectively.c ∈ Rr0×r0 is a diagonal
matrix with diagonal elements in the interval[0, 1]. The steepest descent subgradient off sq(w) can
be computed as follows. First letgℓ :=

∑n
i=1 ∂ℓi(xi

⊤w)/∂w be the gradient of the loss term and
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λ′ := λ∥w∥∗. In addition, we definegℓ
0 = (Idr

− u1u1
⊤)gℓ(Idc

− v1v1
⊤). Then,

min
g∈∂fsq(w)

∥g∥2
2 = min

g∈∂∥w∥∗

∥∥gℓ + λ′g
∥∥2

2

= min
u0,v0,c

∥gℓ + λ′ (u1v1
⊤ + u0cv0

⊤)
∥2
2

= min
u0,v0,c

∥gℓ
0 + λ′u0cv0

⊤∥2
2 + c(gℓ, u1, v1)

= min
c∈[0,1]r0

∑r0
j=1

(
λ′cj − σj(gℓ

0)
)2 + c(gℓ, u1,v1)

=
∑

j:σj(gℓ
0)>λ′

(λ′ − σj(gℓ
0))

2 + c(gℓ,u1, v1),

where the third equality follows from the orthogonalityu1⊥u0 andv1⊥v0 andc(gℓ, u1, v1) is a
constant with respect tou0, c, andv0, which we cannot control. The fourth line follows from von
Neumann’s inequality, which states forw, q ∈ Rdr×dc

⟨w, q⟩ ≤
∑min(dr,dc)

j=1 σj(w)σj(q),
whereσj(·) is thej-th singular value of a matrix; the equality is obtained when the singular vectors
of w andq coincide. In the above minimization, we chooseu0 andv0 as the right and left singular
vectors of−gℓ

0. Finally the last line is obtained by choosingcj ascj = min(σj(gℓ
0)/λ′, 1).

3.2 Computation of the projection
The projection (Eq. (3)) subject to the bound on the trace norm can be computed as follows. First,
similarly to above, using von Neumann’s inequality, we obtain

min
w

∥w − ŵ∥2
2 = min

{σj(w)}r̄
j=1

∑r̄
j=1 (σj(w) − σj(ŵ))2 ,

where r̄ = min(dr, dc). The equality is obtained when the singular vectors ofw coincide with
those ofŵ. Now all we need to solve is the following minimization problem over the singular
values{σj(w)}r̄

j=1:

minimize
{σj(w)}r̄

j=1

1
2

r̄∑
j=1

(σj(w) − σj(ŵ))2 , subject to σj(w) ≥ 0,
r̄∑

j=1

σj(w) ≤ C,

whose dual problem can be written as follows:

maximize
ν≥0

−1
2

∑
j∈J+

(ν − σj(ŵ))2 − Cν +
r̄∑

j=1

1
2
σ2

j (ŵ),

whereJ+ := {j : σj(ŵ) − ν > 0}. For solving the dual problem, we can use the algorithm
described in [12, 11] which is a Newton method on the dual variableν. The algorithm updates the

dual variable asν :=
P

j∈J+
σj(ŵ)−C

|J+| until convergence. Finally the primal variable can be obtained
asσj(w) = (σj(ŵ) − ν)+.

4 Experimental results

We apply the methods described above to the six class classification problem in the context of
brain-computer interfacing (see [14] for details). The loss functionℓi is the negative logarithm of

multinomial likelihood, i.e.,zi = {zi,l}6
l=1 ∈ R6 andℓi(zi) = −zi,yi + log

(∑6
l=1 exp(zi,l)

)
,

whereyi ∈ {1, . . . , 6} is the correct class label. Moreover,xi ∈ R6×(37×64) andw ∈ R37×64. The
number of samplesn = 2550. Figure1 shows the results of the two methods on a simulated data.
Figure2 shows the results of the two methods on a real data provided by J. R. Wolpaw, G. Schalk,
and D. Krusienski in the BCI competition III [15]. The L-BFGS method seems to have difficulty
in reducing the relative duality gap lower than10−2; in fact, in both experiments the quasi-Newton
direction tends to give insufficient decrease after 500-1000 iterations. However at this point it is not
clear whether it is due to the optimization algorithm or the looseness in the evaluation of the lower
bound. The gradient projection method performs well for the simulated data but tends to require a
large number of iterations for the real data, probably because of the poor scaling of the real problem.
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Figure 1:Simulated data. The subgradient L-BFGS method (left)
spent 11784 function evaluations and 2240 seconds to achieve
RDG=9.7×10−6. The gradient projection method (right) spent 79
function evaluations and 12 seconds to achieve RDG=9.3× 10−7.
RDG denotes the relative duality gap.
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Figure 2: Real data. The subgradient L-BFGS method (left)
spent 14935 function evaluations and 2476 seconds to achieve
RDG=1.2 × 10−4. The gradient projection method (right)
spent 13650 function evaluations and 2619 seconds to achieve
RDG=2.4 × 10−5. RDG denotes the relative duality gap.

5 Discussion

We have proposed two formulations for sparsity-inducing regularization that includes lasso, group
lasso, and trace norm regularization with general convex differentiable loss functions; the proposed
formulations enable us to use recently developed techniques for lasso and group lasso, namely
subgradient-based L-BFGS method [8, 9] and the gradient projection method [13, 12, 11], also for
the trace norm regularization. The differentiability of the loss function provides a simple one-to-one
correspondence between primal variablez and dual variableα. We have chosen two formulations
whose duals are unconstrained, which enables us to access the dual objective value at any primal
iterate. This technique may be used in any (including nonconvex) optimization problem that can be
separated into several terms, some of which are differentiable.
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