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Abstract

In this paper, we propose three extensions of trace norm for the minimization of
tensor rank via convex optimization. One of the proposed extensions recovers
partially observed tensor almost perfectly from a small fraction of observations.

1 Introduction

Higher order tensor decompositions have recently been studied intensively motivated by their use-
fulness in various fields including chemometrics, neuroimaging, and graph analysis [1]. Tensor
decomposition methods aim to separate the factors spanning each modality of a given tensor and
the interactions among the factors. The smaller the number of factors or the smaller the number of
interactions, the more compact and succinct the decomposition is.

Matrix completion, or matrix estimation, has recently witnessed a great advance driven by powerful
theory [2, 3] from compressed sensing and tools from convex optimization [4].

In this paper, we consider the problem of tensor completion, or more generally tensor estimation,
which aims to recover an unknown tensor from partial (noisy) observations under the assumption
that the underlying tensor admits a compact decomposition. This setting obviously includes the case
of decomposing a fully observed tensor.

The aim of this paper is to extend the trace norm, which is the key component in matrix completion
via convex optimization, for the tensor completion problem.

2 Low rank matrix and tensor

2.1 Rank of a matrix and the trace norm

The rank r of an R × C matrix X is defined via the singular-value decomposition (SVD)

X = Udiag(σ1(X), σ2(X), . . . , σr(X))V ⊤,

where U ∈ RR×r and V ∈ RC×r are orthogonal matrices, and σj(X) is the jth largest singular-
value of X . The matrix X is called low-rank if the rank r is less than min(R,C). Unfortunately, the
rank of a matrix is a nonconvex function, and the direct minimization of matrix rank is an NP-hard
problem.

The trace norm is known to be the tightest convex lower bound of matrix rank [3] and is defined as
the linear sum of singular values as follows:

∥X∥∗ =
r∑

j=1

σj(X).

The trace norm allows us to estimate low-rank matrices via convex optimization with a theoreti-
cal guarantee [2]. Intuitively, the trace norm plays the role of the ℓ1-norm in the subset selection
problem, for the estimation of low-rank matrices.
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2.2 Rank of a tensor

We consider the k-rank of tensors, which is a direct generalization of the above definition of the
matrix rank; see [1] for other definitions of tensor rank.

The k-rank of an Kth-order tensor X , denoted rankk(X ), is defined as the rank of the mode-k
unfolding X(k) of X . The tensor X is called low-rank if any of its unfoldings is a low-rank matrix.

A rank-(r1, . . . , rk, . . . , rK) tensor X of dimensions n1 × · · · × nK can be written as
X = G ×1 U1 ×2 U2 · · · ×K UK ,

where ×k denotes the k-mode matrix product, G ∈ Rr1×···×rK is called the core tensor, and Uk ∈
Rnk×rk (n = 1, . . . ,K) are left singular-vectors from the SVD of the mode-k unfolding of X . The
above decomposition is called the Tucker decomposition [1].

Since the core tensor G that corresponds to singular-values in the matrix case is not diagonal in
general, it is not straightforward to generalize the trace norm from matrices to tensors.

3 Three strategies to extend the trace-norm regularization to tensors

In this section, we first consider a given tensor as a matrix and propose to minimize the trace norm
of one of its unfoldings. Next, we extend this to the minimization of the weighted sum of the trace
norms of the unfoldings. Finally, relaxing the condition that the tensor is jointly low-rank in every
mode in the second approach, we propose a mixture approach.

3.1 Tensor as a matrix

The definition of a low-rank tensor in the previous section implies that a low-rank tensor is a low-
rank matrix when unfolded appropriately.

Therefore, for the reconstruction of partly observed tensor, we can solve the following problem:

minimize
X∈Rn1×···×nK

1
2λ

∥Ω(X ) − y∥2 + ∥X(k)∥∗, (1)

where X(k) is the mode-k unfolding of X , y ∈ RM is the vector of observations, and Ω :
Rn1×···×nK → RM is a linear operator that reshapes the prespecified (possibly overlapping) el-
ements of the input tensor into an M dimensional vector; M is the number of observations.

Since the estimation procedure (1) is essentially an estimation of a low-rank matrix X(k), we know
that O(ñ6/5

k rk log(ñk)) samples are enough to perfectly recover the unknown true tensor X ∗, where
rk = rankk(X ∗) and ñk = max(nk,

∏
k′ ̸=k nk′), if the rank rk is not too high [2].

Note that when we can estimate the mode-k unfolding of X ∗ perfectly, we can also recover the
whole X ∗ perfectly, including the ranks of the modes we did not use during the estimation.

However, the success of the above procedure is conditioned on the choice of the mode to unfold the
tensor. If we choose a mode with a large rank, even if there are other modes with smaller ranks, we
cannot hope to recover the tensor from a small number of samples.

3.2 Constrained optimization of low rank tensors

In order to exploit the rank deficiency of more than one mode, it is natural to consider the following
extension of the estimation procedure (1)

minimize
X∈Rn1×···×nK

1
2λ

∥Ω(X ) − y∥2 +
K∑

k=1

γk∥X(k)∥∗.

This is a convex optimization problem, because it can be reformulated as follows:

minimize
x,Z1,...,ZK

1
2λ

∥Ωx − y∥2 +
K∑

k=1

γk∥Zk∥∗, (2)

subject to P kx = zk (k = 1, . . . ,K), (3)
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Figure 1: Comparison of three strategies, tensor as a matrix (“As a Matrix”), constrained optimiza-
tion (“Constraint”), and mixture of low-rank tensors (“Mixture”). Also the Tucker decomposition
with 20% higher rank (“large”) and with the correct rank (“exact”) implemented in the N-way tool-
box [6] are included as baselines. The generalization error is plotted against the fraction of observed
elements of the underlying low-rank tensor. Also the tolerance of optimization (10−3) is shown.

where x ∈ RN is the vectorization of X (N =
∏K

k=1 nk), P k is the matrix representation of mode-
k unfolding (note that P k is a permutation matrix; thus P k

⊤P k = IN ), Zk ∈ Rnk×N/nk is a
matrix of the same size as the mode-k unfolding of X , and zk is the vectorization of Zk. With a
slight abuse of notation Ω ∈ RM×N denotes the observation operator as a matrix.

This approach was considered earlier in [5], but they relaxed the constraints (3) into penalty terms,
which is more similar to the approach we discuss in the next subsection.

3.3 Mixture of low-rank tensors

The optimization problem (2) is a constrained optimization problem and requires sophisticated tools
to optimize. One simpler alternative is to predict with a mixture of K tensors; each mixture compo-
nent is regularized by the trace norm to be low-rank in each mode. More specifically, we solve the
following minimization problem:

minimize
Z1,...,ZK

1
2λ

∥∥∥∥Ω(
1
K

∑K

k=1
P k

⊤zk

)
− y

∥∥∥∥2

+
K∑

k=1

γk∥Zk∥∗. (4)

Note that when x = P k
⊤zk for all k = 1, . . . ,K, the problem (4) reduces to the problem (2).

4 Numerical experiments

We randomly generated a rank-(7,8,9) tensor of dimensions (50,50,20) by drawing the core from
the standard normal distribution and multiplying its each mode by an orthonormal factor randomly
drawn from the Haar measure. We randomly selected some elements of the true tensor for training
and kept the remaining elements for testing. Alternating direction method of multiplier [7] with
tolerance 10−3 was used for the optimization problems (1), (2), and (4). We choose γk = 1 for
simplicity in the later two approaches. For the first two approaches, λ → 0 (zero training error) was
used. For the third approach (4), λ = 0.001 was used. Computational details are omitted for the sake
of brevity. The Tucker decomposition algorithm tucker in the N-way toolbox [6] is also included
as a baseline, for which we used the correct rank (“exact”) and the 20% higher rank (“large”). Note
that all proposed approaches can find the rank automatically. The generalization error is defined as
the square-root of the sum of squared differences between the true and the estimated tensors over
the unobserved elements. For the “As a Matrix” strategy, error for each mode is reported. The
experiment was repeated 10 times and averaged.

Figure 1 shows the result of tensor completion using three strategies we proposed above, as well as
the Tucker decomposition. The proposed “Constraint” approach shows a sharp threshold behaviour
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Figure 2: Fraction of observations at the threshold plotted against the sum of true ranks. Numbers in
the brackets denote the k-rank of the underlying tensor. The dimension of the tensor is (50,50,20).

around 35% observation from very bad fit (generalization error> 1) to almost perfect fit (gener-
alization error≅ 10−3). The “As a Matrix” approach also show similar transition for mode 1 and
mode 2 (around 40%), and mode 3 (around 80%), but even the first transition is slower than the
“Constraint” approach. The “Mixture” approach shows no clear transition. Tucker shows the fastest
decrease in the generalization error, but when the rank is missspecified (“large”), the error remains
almost constant; even when the correct rank is known (“exact”), the convergence is slower than the
proposed “Constraint” approach.

We have further investigated the condition for the threshold behaviour using the proposed “Con-
straint” approach. In Figure 2, we can see that the fraction of observations required to perfectly
recover an unknown tensor is roughly proportional to the sum of the rank of the underlying tensor,
where we define the reconstruction to be perfect when the mean generalization error is less than 0.01.

5 Summary

In this paper we have proposed three strategies to extend the trace norm to tensor rank minimization,
and we have compared them on a simulated tensor completion problem. We have found that tensor
completion using the “Constraint” approach shows nearly perfect reconstruction from only 35%
observations. There is no need to specify the rank of the decomposition as in the conventional
Tucker decomposition approach. The proposed approach shows a sharp threshold behaviour and we
have found that the fraction of samples at the threshold is roughly proportional to the sum of ranks
of the underlying tensor. Further analysis is necessary to explain the threshold behaviour.
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