
Understanding the role of
invariances in training neural
networks

Ryota Tomioka

Microsoft Research Cambridge

Joint work with:
Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro

Neural networks are over-parametrized

• Many weight configurations realize the same input-output mapping

• Example: node-wise rescaling

𝑓𝑤: 𝑤 ∈ 𝑊 𝑊

𝑤𝑖𝑛

𝑤𝑜𝑢𝑡 ෥𝑤𝑜𝑢𝑡 = 𝑤𝑜𝑢𝑡 ⋅ 𝛼

෥𝑤𝑖𝑛 = 𝑤𝑖𝑛/𝛼

≡

Questions

• What is the consequence?

‐ Does it generalize better because it is over-parametrized?

‐ Can we optimize better if we are aware of the ambiguities?

• Basic question

‐ Can we characterize what sort of ambiguities there are?

Node-wise rescaling

𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

Node-wise rescaling

𝑤→𝑣

Node-wise rescaling

෥𝑤→𝑣 =
𝑤→𝑣

𝑤→𝑣

෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝑤→𝑣

What this means

• When the activation is rectified linear, the scale of the weights except

for the last layer, carries no meaning

‐ It doesn’t change the function

‐ In particular

𝑓𝑤 ≡ 𝑓𝑤: 𝑤→𝑣 2 = 1 if 𝑣 ∉ 𝑉out ≡ 𝑓𝑤: 𝑤→𝑣 =
෥𝑤→𝑣

෥𝑤→𝑣 2
if 𝑣 ∉ 𝑉out

Unconstrained
parameterization

Constrained
parameterization

Normalized
parameterization

Check on MNIST (ReLU network)

Check on MNIST (sigmoid)

Theorem

• If the function 𝑓𝑤+Δ𝑤 = 𝑓𝑤 + 𝑂(Δ𝑤 2), then

Δ𝑤,
𝜕𝐿(𝑓𝑤)

𝜕𝑤
= 0

‐ That is, gradient is orthogonal to any direction that keeps the function

unchanged

• Proof

𝜕𝐿(𝑓𝑤)

𝜕𝑤
=

𝜕𝐿

𝜕𝑓𝑤
⋅
𝜕𝑓𝑤
𝜕𝑤

and
𝜕𝑓𝑤
𝜕𝑤

⋅ Δ𝑤 = 0

Is this good enough?

• Consider

‐ Parametrization 1: 𝑓𝑤

𝑤′ = 𝑤 − 𝜂
𝜕𝐿

𝜕𝑤

‐ Parametrization 2: 𝑓𝑤: 𝑤 =
𝑣

𝑣

𝑣′ = 𝑣 − 𝜂
𝜕𝐿

𝜕𝑤
⋅
𝜕𝑤

𝜕𝑣

𝑤

𝑤′

𝑣

𝑣′

𝑤(𝑣′)

𝑤 𝑣 =
𝑣

𝑣

Gradient descent in the two parametrizations are not equivalent!

Two views

• Since many learning algorithms are parameterization

sensitive, let’s find a good parameterization.

‐ Batch normalization [Ioffe &Szegedy, 2015]

‐ Algebraic analysis of Bayesian neural networks [Watanabe et al.]

• Search for an algorithm that is invariant to parameterization

‐ Natural gradient

‐ Path-SGD [Neyshabur+ 2015]

‐ Bayesian neural network with Jeffrey’s prior

20

Batch normalization [Ioffe &Szegedy, 2015]

• Idea: normalize the input each unit receives to have zero mean and

unit variance. Mean and variance estimated using a minibatch.

𝑧𝑣

𝑦𝑢

Ƹ𝑧𝑣
𝑧𝑣

𝑦𝑢

𝜎𝑣
2𝜇𝑣

Training
mini-batch

Normalization
mini-batch

𝑤𝑢𝑣 𝑤𝑢𝑣

Ƹ𝑧𝑣 =
𝑧𝑣 − 𝜇𝑣
𝜎𝑣

𝑧𝑣 =෍

𝑢

𝑤𝑢𝑣𝑦𝑢

21

Batch normalization as data-dependent
reparametrization

• Forward path:

Ƹ𝑧𝑣 =
𝑤→𝑣
𝑇

𝑤→𝑣
𝑇 𝐶𝑤→𝑣

⋅ 𝑦𝑐

where

𝑦𝑐 = 𝑦𝑢 −
1

𝑛
σ𝑖=1
𝑛 𝑦𝑢

𝑖
and 𝐶 =

1

𝑛
σ𝑖=1
𝑛 𝑦𝑐

𝑖
𝑦𝑐

𝑖 𝑇

Centered activation Covariance of previous layer
22

෥𝑤

This is not
parametrization
invariant but works
well in practice!!

Path-SGD [Neyshabur+ 2015]

• (Approximate) steepest descent with respect to the squared path norm

Δ𝑤𝑒 = −
1

𝜅𝑒(𝑤)
⋅
𝜕𝐿

𝜕𝑤𝑒

where

𝜅𝑒 𝑤 = σ𝑝∋𝑒ς𝑒′∈𝑝\ 𝑒 𝑤𝑒′
2

Sum over all the
paths that include e

Product over all the
edges along path p
except for e

23𝜅𝑒(𝑤) can be efficiently computed by forward and backward propagations.

Path-SGD [Neyshabur+ 2015]

• (Approximate) steepest descent with respect to the squared path norm

Δ𝑤𝑒 = −
1

𝜅𝑒(𝑤)
⋅
𝜕𝐿

𝜕𝑤𝑒

where

𝜅𝑒 𝑤 = σ𝑝∋𝑒ς𝑒′∈𝑝\ 𝑒 𝑤𝑒′
2

Sum over all the
paths that include e

Product over all the
edges along path p
except for e

24𝜅𝑒(𝑤) can be efficiently computed by forward and backward propagations.

Path-SGD [Neyshabur+ 2015]

• (Approximate) steepest descent with respect to the squared path norm

Δ𝑤𝑒 = −
1

𝜅𝑒(𝑤)
⋅
𝜕𝐿

𝜕𝑤𝑒

where

𝜅𝑒 𝑤 = σ𝑝∋𝑒ς𝑒′∈𝑝\ 𝑒 𝑤𝑒′
2

Sum over all the
paths that include e

Product over all the
edges along path p
except for e

25𝜅𝑒(𝑤) can be efficiently computed by forward and backward propagations.

Path-SGD [Neyshabur+ 2015]

• (Approximate) steepest descent with respect to the squared path norm

Δ𝑤𝑒 = −
1

𝜅𝑒(𝑤)
⋅
𝜕𝐿

𝜕𝑤𝑒

where

𝜅𝑒 𝑤 = σ𝑝∋𝑒ς𝑒′∈𝑝\ 𝑒 𝑤𝑒′
2

Sum over all the
paths that include e

Product over all the
edges along path p
except for e

26𝜅𝑒(𝑤) can be efficiently computed by forward and backward propagations.

Path-SGD is invariant to rescaling

• Suppose we transform
෥𝑤𝑣→ = 𝑤𝑣→ ⋅ 𝛼, ෥𝑤→𝑣 = 𝑤→𝑣/𝛼

• Then

Δ෥𝑤𝑣→ = −
𝛼2

𝜅𝑒 𝑤
⋅
1

𝛼

𝜕𝐿

𝜕𝑤𝑣→
= 𝛼 ⋅ Δ𝑤𝑣→

Δ෥𝑤→𝑣 = −
1

𝛼2 ⋅ 𝜅𝑒 𝑤
⋅ 𝛼 ⋅

𝜕𝐿

𝜕𝑤→𝑣
= 𝛼−1Δ𝑤→𝑣

Out-going edges to v In-coming edges to v

෥𝑤𝑜𝑢𝑡 = 𝑤𝑜𝑢𝑡 ⋅ 𝛼

෥𝑤𝑖𝑛 = 𝑤𝑖𝑛/𝛼

27

This is invariant to
node-wise rescaling
(and works well)

Is node-wise rescaling all we should worry
about?

• Network: 3 layers (64-32-32-10)

• Theorem:

Number of parameters = “degrees of freedom” + “number of ambiguities”

64 32 32 10

How many
ambiguities do
we have?

3466 64?3402?

Rank of the Jacobian matrix

3402

Discussion

• How do we remove the parameter (w) dependency?

‐ Certainly there are degenerate parameter configurations

‐ Is there a typical behavior?

‐ Large scale limist?

• How do we remove the input dependency?

‐ Can we separate the property of the network (DOF) from the property of the

input distribution?

References

• Neyshabur, Tomioka, Srebro (2015) “In Search of the Real Inductive

Bias: On the Role of Implicit Regularization in Deep Learning”, ICLR.

• Neyshabur, Tomioka, Srebro (2015) “Norm-Based Capacity Control in

Neural Networks”, COLT.

• Neyshabur, Salakhutdinov, Srebro (2015) “Path-SGD: Path-Normalized

Optimization in Deep Neural Networks”, NIPS.

• Neyshabur, Tomioka, Srebro (2016) “Data-Dependent Path

Normalization in Neural Networks, ICLR.

The Jacobian

• Let’s look at the Jacobian

𝐽 =

𝜕𝑓(𝑥1)

𝜕𝑤1

𝜕𝑓 𝑥1
𝜕𝑤2

⋯
𝜕𝑓 𝑥1
𝜕𝑤𝑑

𝜕𝑓 𝑥2
𝜕𝑤1

𝜕𝑓 𝑥2
𝜕𝑤2

⋮

𝜕𝑓 𝑥𝑛
𝜕𝑤1

⋯
𝜕𝑓 𝑥𝑛
𝜕𝑤𝑑

Invariance

• Let 𝑤 and 𝜃 be two ways to parameterize the same set of functions.

Assume that there is a smooth one-to-one mapping between them.

• We say that an algorithm is invariant if

Δ𝑤 =
𝑑𝑤

𝑑𝜃
Δ𝜃

Direction the algorithm
chooses for
parameterization w

Direction the algorithm
chooses for
parameterization 𝜃

33

