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Neural networks are over-parametrized

* Many weight configurations realize the same input-output mapping

* Example: node -wise rescaling




Questions

 What is the consequence?
- Does it generalize better because it is over-parametrized?

- Can we optimize better if we are aware of the ambiguities?

* Basic question

- Can we characterize what sort of ambiguities there are?
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What this means

 When the activation is rectified linear, the scale of the weights except
for the last layer, carries no meaning

- It doesn’t change the function

- In particular
. Woy |
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Check on MNIST (ReLU network)
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Check on MNIST (sigmoid)
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Theorem

e If the function f,, o = fiw + O([|AW]|?), then
oL
< A (fw)> o

ow

- That is, gradient is orthogonal to any direction that keeps the function
unchanged

e Proof
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s this good enough?

w) = —
v
e Consider
. . W
- Parametrization 1: {fw}
, 0L /
= — ~ B '
w'=w—no- e ~Sw
L v
- Parametrization 2: {fW-W = ”v”}
, JdL Jdw
v =V -— '
”aw v

Gradient descent in the two parametrizations are not equivalent!




TWO VIews

e Since many learning algorithms are parameterization
sensitive, let’s find a good parameterization.
- Batch normalization [loffe &Szegedy, 2015]

- Algebraic analysis of Bayesian neural networks [Watanabe et al.]

e Search for an algorithm that is invariant to parameterization

- Natural gradient
- Path-SGD [Neyshabur+2015]

- Bayesian neural network with Jeffrey’s prior

Algebraic Geometry and
Statistical Learning
Theory

Sumio Watanabe
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Batch normalization [loffe &Szegedy, 2015]

 |dea: normalize the input each unit receives to have zero mean and
unit variance. Mean and variance estimated using a minibatch.
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Batch normalization as data-dependent
reparametrization

* Forward path: This is not
parametrization
! wl : : .
5o v ] invariant but works
v = e well in practice!!
Wt e
w

where

Ve = (yu - ?:1Y1(Ll)) and C = - ?:1yc(l)yc(l)
\ | ‘ |
! !

Centered activation

Covariance of previous layer
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Path-SGD [Neyshabur+ 2015]

* (Approximate) steepest descent with respect to the squared path norm

1 dL
Ko.(w) dw,

Aw, = —

where

Ke (W) — Zpae He’Ep\{e} Wezl

[\

Sum over all the Product over all the
paths that include e edges along path p
except for e

K.(W) can be efficiently computed by forward and backward propagations.
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Path-SGD is invariant to rescaling

e Suppose we transform

Wy, = Wy, - @, W, = w,,/a _/ Wour = Wour * @
l Y ' ' i ' Win = Win/
Out-going edges to v In-coming edges to v
* Then
AT — a1 0L A
. Ke(W) oWy, o This is invariant to

1 dL . .
AW_,, = — o = a 'Aw,, [node-wise rescaling

2, . .
a®-xe(w) — Ow,y (and works well)

27



s node-wise rescaling all we should worry
about?

* Network: 3 layers (64-32-32-10)

64 10

32 32
NS \ </
> “‘v?;ié»‘;'v‘i How many
/A".A/“‘ . g
2 ambiguities do

we have?

* Theorem:
Number of parameters = “degrees of freedom” + “number of ambiguities’

3466 34027 647
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Rank of the Jacobian matrix

3300 e e—=— 3402
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Discussion

* How do we remove the parameter (w) dependency?
- Certainly there are degenerate parameter configurations
- Is there a typical behavior?

- Large scale limist?

* How do we remove the input dependency?

- Can we separate the property of the network (DOF) from the property of the
input distribution?
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The Jacobian

e Let’s look at the Jacobian

0f(q) 0f(x)  Of(ry)
dwy ow, dw,
df (xz)  0f (xz)
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Invariance

* Let w and 6 be two ways to parameterize the same set of functions.
Assume that there is a smooth one-to-one mapping between them.

* We say that an algorithm is invariant if

fw =2
w = — K

Direction the algorithm Direction the algorithm
chooses for chooses for
parameterization w parameterization 6



