
AMPNet: Distributed 
Asynchronous Training for 
Dynamic Neural Networks

Alex Gaunt, Dimitrios Vytiniotis, Matthew A. Johnson, 
Maik Riechert, Ryota Tomioka, Sam Webster

Jun 13, 2017 @ EcoCloud Workshop



Deep nets – what’s missing? Image recognition

Speech recognition

Translation



Deep nets – what’s missing?

Dense
matrix
multiply

Elementwise
nonlinear

Uniform unstructured computation – cannot handle structured input



Stanford sentiment tree bank

10k intensely annotated trees. https://nlp.stanford.edu/sentiment/treebank.html



Structured input
invites structured computation

“Algorithm as a prior” allows generalization from few samples

Instance 1

Computational graphsInstances

Spiderman rocks

Spiderman

rocks

Instance 2 this

movie

Love

this movie

Love



Knowledge graphs

Yih et al. (2015) Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base 



Molecules

https://www.chemcomp.com/journal/depictor.htm



Need for new 
hardware/infrastructure



Conventional networks

(vision, speech, etc)

Flexible networks

(tree, graph, etc)

Uniform, regular,

SIMD parallelizable

Non-uniform, irregular

Per-instance computational flow

??



AMPNet

Non-DAG + Streaming + Asynchronous SGD



AMPNet

Non-DAG + Streaming + Asynchronous SGD

Loop is explicit

• Dynamic control flows as static 

computation graphs that allow loops

• No unrolling / padding

(NB: TensorFlow can also express loops using Enter, 

Exit, NextIteration)



AMPNet

Non-DAG + Streaming + Asynchronous SGD

• Per-instance control 

flows as branching and 

merging

(similar to TF’s 

Switch/Merge Ops)



AMPNet

Non-DAG + Streaming + Asynchronous SGD

Loop is explicit

(c.f. Switch/Merge in TF)(c.f. Enter/Exit/NextIteration in TF)



Asynchronous model-parallel SGD

1 2 3 4

Forward Backward Weight update

Instances

Time



3

Pipelining

1 2 4 75 6 8

Asynchronous model-parallel SGD

Forward Backward Weight update

Instances

Time



3

Pipelining

1 2 4 75 6 8

Asynchronous model-parallel SGD

Forward Backward Weight update

Instances

Time



Time Gradients are invalidated by asynchronous 
parameter updates between the forward and 
backward pass

31 2 4 49 5150

Just do work whenever not blocked

Asynchronous model-parallel SGD

Forward Backward Weight update



Outline

• We have built an efficient single-machine multi-threaded 

prototype of Asynchronous Model Parallel SGD

• Some examples

• Deep feedforward classifier

• Variable-length sequence classifier

• Tree recursive neural network

• Graph neural network



Examples



4-layer fully connected network
FeedForwardController#1

Input#1 Label#1

L1

SelectColumnPerRow#1

Relu#1

L2

Relu#2

L3

Relu#3

L4

LogSoftmax#1

Average#1

Objective#1



Asynchronous model parallelism

4 layer MLP with 784 hidden units on MNIST

All cores busy!



4-layer FC network on MNIST 

• Going from sync to 

async (mak=4) boosts 

throughput from 2000 

inst/s to 6000 inst/s

• Mild asynchrony does 

not affect 

convergence Sync (no asynchrony)     Async1 (mild asynchrony)      Async2 (more asynchrony)

(TensorFlow can use all 16 cores)

mak=max_active_keys: limits the number of instances 

that are in-flight



List reduction dataset

• Input: 

• Output: F(Arg1,…,ArgN) (mod M) -> M-class classification

• F is one of the four reduction functions

• Train: 100k instances, Validation: 10k instances

F Arg1 Arg2 … ArgN

Variable length



Variable-length RNN classifier



Replicas

• Simple 1-line change in our IR

• Replicas are initialized identically and 

synchronized at a controllable 

frequency.

• In our experiments, sync per epoch was 

enough



List reduction dataset: Results

Sync (no asynchrony)      Async (mak=4)           Async2 (mak=16)          2 replicas (mak=4)      4 replicas (mak=8)

(mild asynchrony) (more asynchrony)

No replication (TensorFlow can use all 16 cores)



Tree RNN on Stanford Sentiment Tree Bank dataset

• TensorFlow Fold [Looks 

+2017] achieves higher 

throughput but we 

converge faster because 

we don’t batch

• Asynchrony does not 

slow-down convergence

[Socher et al. 2013; Tai et al. 2015]



Gated Graph
Sequence NNPhi

broadcastState dependent pldtx

State transform

RNNCell

Ungroup

Branch

Linear-1 Linear-M

Phi

Group

State transform

Sum

Increment time step

Branch

Group

Output layers

Controller

LookupTable

[Li et al. 2016]



QM9 molecule dataset (graph input regression task)

• We get over 600 graphs/s 

on a 16 core machine 

(Azure H16)

• TensorFlow CPU

~ 70 graphs/s

• Speedup comes from 

sparsity (~2x) and 

asynchrony (~5x) TensorFlow GPU ~ 300 graphs/s (TitanX, not shown in the graph)

QM9 dataset [Ruddigkeit+ 2012; Ramakrishnan+ 2014; Gilmer+ 2017]

9x speed-up



Conclusion

• Our IR is a static representation of dynamic control flows

• Control-flow ops: branch and merge

• Data-flow ops: group, ungroup, flatmap, etc

• Both model parallelism and data parallelism (replicas)

• AMPNet prototype on single-machine multi-core is

• comparable to prior art when batching and easy and no sparsity

• Significantly faster when batching is hard and sparsity can be exploited



• Scenario 1: 4 full-time engineers + 1 RSDE / postdoc

• 2 hardware engineer implements the primitive operations and messaging on hardware to test them on a 

hardware simulator

• 2 software engineers work on language design, compiler, CPU-based simulator, quantization / reduced 

precision

• 1 RSDE / postdoc implements and benchmarks RNNs and GNNs on the simulator

• We will be less dependent on the Catapult team – Ryota will be the full time lead on the project

• Scenario 2: 2 full-time engineers

• 1 software engineer on language design and compiler

• 1 software engineer on the CPU-based simulator

• We will still depend on Catapult team to implement asynchronous training on hardware – no one is 

willing to lead the project in this scenario

• Scenario 3: no additional resource

• We will detach ourselves from Catapult and work on our simulator



Appendix



How it is done in TensorFlow

Li et al. (2016) “Gated Graph Sequence Neural Networks”

NH x 2NH dense matrix

(most entries are zero)



Our IR nodes



Tree RNN

• Updating more 

frequently speeds up 

convergence

muf = min_update_frequency (number of 

gradients to accumulate before an update)


