

AMPNet: Distributed Asynchronous Training for Dynamic Neural Networks

Alex Gaunt, Dimitrios Vytiniotis, Matthew A. Johnson, Maik Riechert, Ryota Tomioka, Sam Webster

Jun 13, 2017 @ EcoCloud Workshop

Deep nets – what's missing?

Image recognition

Speech recognition

Translation

Deep nets – what's missing?

Uniform unstructured computation – cannot handle structured input

•	•	•	•	•	•	
-						
•						

Stanford sentiment tree bank

10k intensely annotated trees. https://nlp.stanford.edu/sentiment/treebank.html

Structured input invites structured computation

"Algorithm as a prior" allows generalization from few samples

Knowledge graphs

Yih et al. (2015) Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base

Molecules

https://www.chemcomp.com/journal/depictor.htm

Need for new hardware/infrastructure

Conventional networks (vision, speech, etc)

Uniform, regular, SIMD parallelizable Flexible networks (tree, graph, etc)

Non-uniform, irregular Per-instance computational flow

Non-DAG + Streaming + Asynchronous SGD

AMPNet

Non-DAG + Streaming + Asynchronous SGD

```
\begin{array}{l} h_0 \leftarrow \texttt{zeros} (\texttt{l,num\_hidden}) \\ \textbf{for } j = 1, \dots, T \textbf{ do} \\ \tilde{x}_j \leftarrow \texttt{embed}(x_j) \\ h_j \leftarrow \texttt{RNNCell}(h_{j-1}, \tilde{x}_j) \\ \textbf{end for} \end{array}
```

Loop is explicit

- Dynamic control flows as static computation graphs that allow loops
- No unrolling / padding

(NB: TensorFlow can also express loops using Enter, Exit, NextIteration)

AMPNet

Non-DAG + Streaming + Asynchronous SGD

 Per-instance control flows as branching and merging

(similar to TF's Switch/Merge Ops)

AMPNet

Non-DAG + Streaming + Asynchronous SGD

$$\begin{array}{l} h_0 \leftarrow \texttt{zeros} (\texttt{l,num}\texttt{hidden}) \\ \textbf{for } j = 1, \dots, T \textbf{ do} \\ \tilde{x}_j \leftarrow \texttt{embed}(x_j) \\ h_j \leftarrow \texttt{RNNCell}(h_{j-1}, \tilde{x}_j) \\ \textbf{end for} \end{array}$$

(c.f. Enter/Exit/NextIteration in TF)

(c.f. Switch/Merge in TF)

Outline

- We have built an efficient single-machine multi-threaded prototype of Asynchronous Model Parallel SGD
- Some examples
 - Deep feedforward classifier
 - Variable-length sequence classifier
 - Tree recursive neural network
 - Graph neural network

Examples

4-layer fully connected network

auto graph = data >>
 Linear("L1", specific_key, input_dim, hidden_dim).affinity(1) >>
 Relu(specific_key) >>
 Linear("L2", specific_key, hidden_dim, hidden_dim).affinity(2) >>
 Relu(specific_key) >>
 Linear("L3", specific_key, hidden_dim, hidden_dim).affinity(3) >>
 Relu(specific_key) >>
 Linear("L4", specific_key, hidden_dim, output_dim).affinity(0) >>
 LogSoftmax(specific_key) >>
 SelectColumnPerRow(specific_key, general_key)(labels) >>
 Average(specific_key) >>
 Objective();

4 layer MLP with 784 hidden units on MNIST

4-layer FC network on MNIST

- Going from sync to async (mak=4) boosts throughput from 2000 inst/s to 6000 inst/s
- Mild asynchrony does not affect convergence

mak=max_active_keys: limits the number of instances that are in-flight (TensorFlow can use all 16 cores)

List reduction dataset

- Output: F(Arg1,...,ArgN) (mod M) -> M-class classification
- F is one of the four reduction functions

• Train: 100k instances, Validation: 10k instances

Variable-length RNN classifier

Replicas

- Simple 1-line change in our IR
- Replicas are initialized identically and synchronized at a controllable frequency.
- In our experiments, sync per epoch was enough

List reduction dataset: Results

Tree RNN on Stanford Sentiment Tree Bank dataset

[Socher et al. 2013; Tai et al. 2015]

- TensorFlow Fold [Looks
 +2017] achieves higher
 throughput but we
 converge faster because
 we don't batch
- Asynchrony does not slow-down convergence

(c) Sentiment Tree Bank (min_update_frequency = 50)

QM9 molecule dataset (graph input regression task)

- We get over 600 graphs/s on a 16 core machine (Azure H16)
- TensorFlow CPU
 ~ 70 graphs/s
- Speedup comes from sparsity (~2x) and asynchrony (~5x)

TensorFlow GPU ~ 300 graphs/s (TitanX, not shown in the graph)

QM9 dataset [Ruddigkeit+ 2012; Ramakrishnan+ 2014; Gilmer+ 2017]

Conclusion

- Our IR is a static representation of dynamic control flows
 - Control-flow ops: branch and merge
 - Data-flow ops: group, ungroup, flatmap, etc
 - Both model parallelism and data parallelism (replicas)
- AMPNet prototype on single-machine multi-core is
 - comparable to prior art when batching and easy and no sparsity
 - Significantly faster when batching is hard and sparsity can be exploited

Appendix

How it is done in TensorFlow

NH x 2NH dense matrix (most entries are zero)

Li et al. (2016) "Gated Graph Sequence Neural Networks"

Our IR nodes

Tree RNN

 Updating more frequently speeds up convergence

muf = min_update_frequency (number of gradients to accumulate before an update)