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Convex low-rank tensor completion
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Conventional formulation (honconvex)

minimize || o (Y —C x1 Uy xo Uy x3 U3) ||5 + regularization.

\

C,U1,U2,Us

observation mode-k product

mini;nize HQ O (y — X) H% S.T. rank(é\,’) < (7“1,7"‘2,7“3).

e Alternate minimization
e Have 1o fix the rank beforehand




Our approach
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Trace norm (nuclear norm) regularization

X e R**¢ m =min(R,O)

near sum of

SIr

[ X[l =) o;(X) U
j=1

gular-values

e Roughly speaking, L1 regularization on the singular-values.

e Stronger regularization --> more zero sing

low rank.

ular-values -->

e Not obvious for tensors (no singular-values for tensors)




Spectral soft-threshold operation
all observed and matrix --> analytic solution

1
softth(X') = argmin (5”2 — X% )\||Z||*)

ZERRXC
= U max(S — \,0)V'
where X=USV'
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Mode-k unfolding (matricization)

Mode-1 unfolding X (4
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| ow-rank tensor Is a low-rank matrix

X =Cx1Uq1 XoU9 X3Us5

Mode-1 unfolding
Xay =U.C¢

VU3 ®U») "
rank = r

Mode-2 unfolding
X)) =UC5(U; ® Us;)'
rank = ro

| Nk of X
Mode-3 unfolding is N0 Mmore than

X3 :Ugcg (U2®U1)T
(3) rank(é)rg the rank of Cy




L ow-rank matrix is a low-rank tensor

e Given X=USV' (low-rank)

e Define
C=Sv"'

U =U
Uy = I,,
Us = I,.

X =C x1U; xoUs; x3Us islow-rank

(at least for mode 1)




What it means

e We can use the trace norm of an unfolding of a

tensor X to learn low-rank X.

Matricization
Tensor X Is | > Unfolding X
low-rank

IS a low-rank
3K, re<l < | matrix

Tensorization




Approach 1: As a matrix

e Pick a mode k, and hope that the tensor to be
learned is low rank in mode k.

. 1
minimize o= [[Q 0 (¥ = ) |5 + [ X k) [+

XERI:[X---XIK

Pro: Basically a matrix problem
— [heoretical guarantee (Candes & Recht 09)
Con: Have to be lucky to pick the right mode.




Approach 2: Constrained optimization

e Constrain so that each unfolding of X is
simultaneously low rank.

K
1
minimize || o (¥ — X) |12 ;;%HX(R)H*'

XeRflx---XIK

Pro:  Jointly regularize every mode
Con: Strong constraint

Yk: tuning parameter usually set to 1.

(See also Signoretto et al.,10; Gandy et al. 11)




Approach 3: Mixture of low-rank tensors

e Fach mixture component Z is regularized to be

low-rank only in mode-k.

minimize
Z1.,.. 2k

Pro;

2

K
1
|20 (V-2 F)|| 2wl Zunl

F k=1

—ach Zx takes care of each mode

Con: Sum is not low-rank




Optimization via
Alternating Direction Method of Multipliers (ADMM})

(Gabay & Mercier 706)

e Useful when we have linear operation inside

sparsity penalty

K
1
minimize  —||Q(X) — y||% + Xl

Permutation




Optimization via
Alternating Direction Method of Multipliers (ADMM})

(Gabay & Mercier 706)

e Useful when we have linear operation inside

sparsity penalty

K
1
minimize  —||Q(X) — y||% + Xl

Permutation

e Split Bregman lteration (coldstein & osher) IS also an ADMM
Total-variation image reconstruction:

L 1 A
minimize ﬁ\lﬂ(w) — v +;HD;‘5’3H

xrcR™ T

2D derivative at jth pixel




ADMM preliminaries

e Problem
miniwmize f(x) + g(Ax)

N

Linear operation
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ADMM preliminaries

e Problem
minimmize f(x) + g(Ax)

N

e Step 1: Split & Augment Linear operation

minimize /() +9(2) + 7| Az — 2|

subject to 2z = Ax
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ADMM preliminaries

e Problem
miniwmize f(x) + g(Ax)

N

e Step 1: Split & Augment Linear operation

minimize f(x) 4+ g(z) + gHAm — ZH2

T,z

subject to 2z = Ax

e Step 2: Augmented Lagrangian function

Ly(z,z,@) = f(2) + 9(2) + o (Az — 2) + _ || Az - 2|7

t t

Ordinary Lagrangian Augmented




ADMM algorithm (Gabay & Mercier 76)

e Minimize the AL function wrt X

'™ = argmin Lyp(z, 2t al),
xrcR™

e Minimize the AL function wrt Z

21 = argmin Ln(wt_l_l, z, ab),
zeR™M

e Update the multiplier vector
altl = af + n(Azttl — 211y,




ADMM algorithm (Gabay & Mercier 76)

e Minimize the AL function wrt X

'™ = argmin Ly(z, 2t al),
xrcR™

e Minimize the AL function wrt Z

21 = argmin Ln(wt_l_l, z, ab),
zeR™M

e Update the multiplier vector
ol tl = ot + n(Aa:‘t_I_l B zt—l—l).

i Every limit point of ADMM is a minimizer of

the original problem. [Eckstein & Bertsekas 92] |



For approach “Constraint”

e Move the permutation out of the regularizer

K
1
minimize 2)\H (X) — vy —I—l;%H |
subject to Xy =42, (k=1,...,K),

e Augmented Lagrangian:

K
1
Loy(X {ZiHo 0 LA = o5 190X) =yl + 3~ el 2l
k=1

K

1
+ 772 (<Al<:aX(k) —Zy) + §HX(1<) — Zk”%’) -
k=1




ADMM for “Constraint” (A — 0)

e Minimize the AL function wrt X

Q(xtTH =8 (% Si_, tensory(Zt — A’,;)) (unobserved elem.

{Q(Xt“l) =y (observed elem.)

e Minimize the AL function wrt Z

t+1 t+1 t —
Z,7' =softth, (X(k> + Ak) (k=1,... K)

e Update multipliers

ATt =AL+ (XN -2 k=1, ,K)




Numerical experiment

e True tensor: Size 50x50x20, rank 7x8x9. No noise (A=0).

e Random train/test split.
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Computation time

e Convex formulation is also fast
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Phase transition behaviour

e Sum of true ranks= min(ry,rar3)+ min(ra,rar1)+ min(rs,rir)
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Phase transition (vs Shatten-1 norm)
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*“Mixture” 1Is sometimes better

e True tensor: Size 50x50x20, rank 50x50x5. No noise (A=0).
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AmIno acid fluorescence data [Bro & Andersson}

Size 201x61x5.

Five solutions with different amount of three amino

acids (tyrosine, tryptophan, phenylalanine)

Rank=3 PARAFAC is correct.

Interested in

- Generalization performance
- Number of components

- Interpretation




Amino acid: Generalization performance
e “Constraint” performs comparable to PARAFAC with

the correct rank.
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Amino acid: Singular-value spectra

—stimated spetra from half of the entries are almost
identical to the truth.

Estimated




Improving Interpretabllity

e Apply PARAFAC on the core (4x4x5) obtained by the
proposed “constraint” approach.

e Separate imputation problem and interpretation
problem.

X:C><1U1 ><2U2 ><3U3
:(A(l)@A(2>@A(3)) X1 U1 XoU»> x3U3

A U,4M) 6 (U,4@) 0 (U343
RAFAC




Obtained factors

PARAFAC(3) PARAFAC(4) Proposed(4)
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Summary

Low-rank tensor completion can be computed in a convex

optimization problem using the trace norm regularization.

- No need to specify the rank beforehand.
Convex formulation is more accurate and faster than

conventional EM-based Tucker decomposition.

Curious “phase transition” found - compressive-sensing-

type analysis is an on-going work.
Combination of proposed+PARAFAC is useful.

Code:
- http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares/Tensor
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ADMM convergence

e Step 1: ADMM is equivalent to Douglas-Rachfold
Splitting in the dual

t+1 __ t t t
alt1l — proxg*(proxf*(_AT.)(a —z) 4+ z )

t+1 t b t
z — proxg(proxf*(_AT.)(a z°)+ z )




