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Netflix challenge (2006-2009)

* 51,000,000 prize

* Goal: Improve the performance of a video
recommendation system

(predict who likes which movies)

* Example:

O Likes “Star Wars” and “E.T”,

. Doesn’t like “Minority Report”.

Does he like “Blade Runner”?
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Goal: fill the missing entries!



Matrix completion

* Impossible without an assumption. (Missing
entries can be arbitrary) --- problem is ill-posed

* Most common assumption:

Low-rank decomposition
Movies

Y = UXx V!

Users

Users’ features Movies’ features



Matrix completion

* Most common assumption:

Low-rank decomposition (rank r)

Movies

Users

Users’ features Movies’ features
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in r-dim space



Geometric Intuition

r-dimensional space
(r: the rank of the decomposition)

Movies he © @ Movies he likes

doesn’t like

VT




Geometric Intuition

r-dimensional space
(r: the rank of the decomposition)




Tensor data completion

* Tensor = Multi-dimensional array

* Beyond 2D

Movie preference
+ time / context / action




Tensor data completion

* Tensor = Multi-dimensional array

* Beyond 2D

Climate monitoring
- temperature

- humidity

- rainfall

Location

Sensors



Tensor data completion

* Tensor = Multi-dimensional array
* Beyond 2D

Neuroscience
(brain imaging)

Sensors



Rest of this talk

 Computing low-rank matrix decomposition
* Generalizing from matrix to tensor

* Analyzing the performance

— Statistical learning theory



Computing low-rank matrix
decomposition



Computing low-rank decomposition

 |f all entries are observed (no missing entries)

— Given Y, compute singular value decomposition (SVD)

n I

m Y '=,mUrZr VT

where U, V: Orthogonal (UTU=I, VTV=l)

01

o;: jth largest singular

. =

value



Tolerating missings
Optimization problem
minimize Z (yZJ —’U,iT”Uj)Q

U.V )
’ (i5)e2
Users’ Movies’ Set of observed
feat:res fea’;ures index pairs

my "V




Tolerating missings
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Optimization problem- Non-convex!
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Tolerating missings
Optimization problem | Still non-convex!
minimize Z (yw — wij)z,
v (i7)€2
subject to rank(W) <r

\ Rank constraint

is NP hard




Convex relaxation of rank

Schatten p-norm ||W||gp = ;:j 1O o (W)
(to the pth power)

o;(W) : jth largest singular value

p—0
W% == rank(W)

|X|0.01

xos | | P=11S the l‘ightest

IxI

X convex relaxation

(also known as

trace norm /

nuclear norm)




Tolerating missings
Optimization problem | Convex relaxation
minimize Z (yw — wij)Q,
i (i)
subject to ||Wg, <

Sch -
chatten 1-norm HWH51 — S:j . O'j(W)

(nuclear norm,

trace norm) o;(W) : jth largest singular value

Cf. Lasso (L, norm) for variable selection
= linear sum of abs. coefficients



Take home messages

e Rank constrained minimization is hard to solve
(non-convex and NP hard)

* Can be relaxed into a tractable convex problem
using Schatten 1-norm.



How about tensors?

- How to define tensor rank?

- How related to matrix rank?



Ranf of a tensor
Definition. Let X € R™* " *"¥ (Kth order tensor)

The smallest number R such that the given
tensor X Is written as

R /
X = Z A, where A, = is rank one.
r=1 H\

(can be written as an outer
product of K vectors)

e Called CP (CANDECOMPO/PARAFAC) decomposition
* Bad news: NP hard to compute the rank R even for
a fully observed X.



Bad news 2: Tensor rank is not closed

X . k 3 < Rank 2 Rank 3
IS ran oY
X =|ajobyo cz/rﬂ H< o
—+laq1 o by ocq T / x© x0 X
T|a2 O bl ©C] \ Kolda & Bader 2009
orank 2 B <
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TUCker. dCCOmPOS iTiOn [Tucker 66]

Factors
N3 Core - rl
n '3 4 ] N :
1 :r1><1n1um X 9 ZU(z)
>
T1 To T3
(-3 3 cwutupg)
a=1b=1 c=1

* Also known as higher-order SVD [De Lathauwer+00]

* Rank (ry,r,,r3) can be computed in polynomial time

using unfolding operations.



Mode-k unfoldings (matricization)

Mode-1 unfolding X (4
nz N2

(N ﬁj Dol ]

| nz-na3
Mode-2 unfolding X (2

ns ns ns
n1 / /n2 009
no N3 L




Computing Tucker rank

* For each k=1,...,K

— Compute the mode-k unfolding X

— Compute the (matrix) rank of X,

r. = rank(X(k))

Tensor X IS
low-rank in
the kth mode

Unfolding

-

Folding

-

Matrix X IS
low-rank

~

K(as a matrlx)/




Computing Tucker rank

* Foreach k=1,...,K
— Compute the mode-k unfolding X,

— Compute the (matrix) rank of X,
r. = rank(X(k))

e Difference between Tensor rank and Tucker rank

— Tensor rank is a single number R (may not be easy to compute)

— Tucker rank is defined for each mode (easy to compute)

e CP decomp is a special case of R /] -
Tucker decomp with ﬁﬁ@@

c= Rl 19

R=r,=r,=...=r,and diagonal core




Basic idea

 We know how to do matrix completion with
Schatten 1-norm (tractable convex optimization)

 We know how to compute Tucker rank (=the rank
of the mode-k unfolding)

Convex, tractable

B + Unfolding = tensor

norm

completion




Overlapped Schatten 1-norm for Tensors

1 K
Wiy, =+ 3 Wi ls
k=1

Schatten 1-norm of
the mode-k unfolding

Measures the overall low-rank-ness
(not just a single mode)



Convex Tensor Estimation

Matrix
Estimation of low-
rank matrix
(hard) Convex
relaxation
Tensor
Estimation of low-
rank tensor
(hard) Convex
relaxation

Schatten 1-norm
minimization
(tractable)
[Fazel, Hindi, Boyd
01]

V Generalize

Overlapped
Schatten 1-norm
minimization
[Liu+09, Signoretto+10,
Tomioka+10, Gandy+11]




Empirical performance

Tensor completion result [Tomioka et al. 2010]

Error IIW*—W’\IIF

—_i
o

—_i
o

size=50x50x20, rank=7x8x9 (No noise)

—— Convex
— EM (nonconvex)

o

|
W

— |- == Optimization tolerancef]

| | | . |
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of observed elements

M/(n,;n,n,)

Phase transition!!
Can we predict this theoretically?

1



Analyzing the performance of
convex tensor decomposition



Problem setting

Observation model

yi = (X, W) +e (1=1,...,M)
W™ true tensor rank-(r,...,r,)

€; Gaussian noise

Example (tensor completion)

AL
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Problem setting

Observation model

yi = (X, W) +e (1=1,...,M)
W™ true tensor rank-(r,...,r,)

€; Gaussian noise

Example (tensor completion)

Nj -
LAY
/—ﬂ



Problem setting

Observation model

yi = (X, W) +e (1=1,...,M)
W™ true tensor rank-(r,...,r,)

€; Gaussian noise

Example (tensor completion)

n;
Ny

X4= Ny

and so on...



Problem setting

Observation model

W™ true tensor rank-(r,...,r,)

€; Gaussian noise N(0,0?)

Optimization Empirical error  Regularization
. , 1
W= argmin (oolly— XM+ AW,
WERNPLX XNk 2M " p
” Observation Reg. Const.
(N — HkZI nk) model x - RN . RM

XOW) = (X1, W),... (X, W) '



Analysis objective

* We would like to show something like

{ Estimated True low- }
tensor rank tensor

Mean . 12
squared mW - W F <0 c(n,r)
N - P\ M
error
Thesize = (n1,...,nK)
Therank = (rq,...,7K)

Number of samples M



Theorem: random Gauss design

Assume elements of X, are drown iid from standard
normal distribution. Moreover

#samples (M)
#variables (V)

B T

> crlln ™ 1 allrllie ~ —

\ Y J n
Normalized rank

_ K 2 K 2
In e = (% Sis V) s lirllge o= (3 20 viw)



Theorem: random Gauss design

Assume elements of X, are drown iid from standard
normal distribution. Moreover

#samples (M)

| > crln M ellr e A —

#variables (N) — oy
|

Normalized rank

Convergence! W

P % ||| 2 _

|47 4% P UZH” 1Hl/zH’rHl/z

<0,
N M

_ K 2 K 2
In s = (e S V) Il = (% 20 Vi)




Proof idea

Since )A) minimizes the objective,

{ Estimated True low- }
tensor rank tensor

AN

Obj(W) < Obj(W")

M

It is not so hard to see: /_c/, X*(e) =) &,

1=1
ROV~ WZ < (/MW — W) 4 Ay - W

S1

What we want to derive:

-,

N S<0 (C(?\}r)>




Proof outline (1/3)

Estlmated True Iow-
tensor rank tensor

S X0V = WIF < (x7(e)/M W - W)

Inequality 1: upper-bound the dot product

)

<3€*(e)/M,W—W*> <o, (\/ o?N|n~1 ||1/2mW W

(optimization duality / random matrix theory)



Proof ouTline (1/3)

Estlmated True low-
tensor rank tensor

2N|\n |
—H%(W W5 < 12 /\M)

Inequality 1: upper-bound the dot product

<%*(e)/M,W—W*> < Op (\/ o?N|ln~1 ||1/2H‘W 4% “)S1>

Trade-off between ¢ N”" Uiz and Ay

j> Optimal reg. const A =~ 0; (W’ Niln- ”1/2)



Proof outline (2/3)

{ Estimated True low- }
tensor rank tensor

S IXOV = W95 < \/ 20— W

51

Inequality 2: relate the schatten 1-norm
with the Frobenius norm

W=l < etV - w

(relation between L1- and L2-norm)




Proof ouTline (2/3)

Estlmated True low-
tensor rank tensor

—II%(W WH|I5 <

2N||’n ||1/2H7°||1/2

v -wi

Inequality 2: relate the schatten 1-norm
with the Frobenius norm

W=l < etV - w

(relation between L1- and L2-norm)




Proof outline (3/3)

Estlmated True Iow-
tensor rank tensor
2N||’n 1120712

—H%(W W15 < 77 W —wr|

Inequality 3: Iower-bound the left hand-side

i —II%(W W95

/{HW W*

#samples (M) Hn_ 1ol
> c
#variables (N) — ! L2102

(Gordon-Slepian Theorem in Gaussian process theory)



Proof ouTline (3/3)

Estlmated True low-
tensor rank tensor

- <

||1/2||"°||1/2 H‘W W*

Inequality 3: Iower-bound the left hand-side

/{HW W*

i —II%(W W5

#samples (M) Hn_ 1ol
> c
#variables (N) — ! L2102

(Gordon-Slepian Theorem in Gaussian process theory)



Back to the theorem statement

Assume elements of X; are drown iid from standard normal distribution, Moreover
#samples (M) » -
> n r ~
#variables (N) — Cl\H Hl/QH Hl/g >

] n
|
Convergence! v

Normalized rank
A *||2 20|,,—1
W —wr|> <o, (U |n 1/2\”'°\1/2>

N M

s o= (S V) el = (3 S0 V)
Notice:

* Sample-size condition independent of noise o2.
* Bound RHS proportional to o?.

Threshold behavior in the limit 62=2 0




Estimation error

Tensor completion results

size = 50x50x2Q true rank 7x8x9 or 40x9x7

| |—— Covex [40 9 7]

—— Convex [7 8 9]

- - - Optimization tolerance
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Normalized rank
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Including 4™ order tensors

Fraction at err<=0.01
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Matrix / tensor completion

K=2
Matrix completion
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Tensor completion
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Tensor completion easier than matrix completion!?



Conclusion

Many real world problems can be cast into the
form of tensor data analysis.

Convex optimization is a useful tool also for the

analysis of higher order tensors.

Proposed a convex tensor decomposition
algorithm with performance guarantee

Normalized rank predicts empirical scaling
behavior well



Issues

Why matrix completion more difficult than tensor
completion?

How big the gap between necessity and sufficiency?

Random Gaussian design # tensor completion

= Incoherence (Candes & Recht 09)

= Spikiness (Negahban et al 10)

When only some modes are low-rank

— Schatten 1-norm is too strong = Mixture approach

— E.g. Mode 1, 4 is low rank but the rest is not
(combinatorial problem)
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