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Convex low-rank tensor completion

Tucker decomposition
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Conventional formulation (honconvex)

minimize || o (Y —C x1 Uy xo Uy x3 U3) ||5 + regularization.

C,U1,U2,Us \

observation mode-k product

mini;nize HQ O (y — X) H% S.T. rank(é\,’) < (7“1,7"‘2,7“3).

e Alternate minimization
e Have 1o fix the rank beforehand



Our approach
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Trace norm regularization (for matrices)
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gular-values

e Roughly speaking, L1 regularization on the singular-values.

e Stronger regularization --> more zero sing

low rank.

ular-values -->

e Not obvious for tensors (no singular-values for tensors)



Mode-k unfolding (matricization)
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—lementary facts about Tucker decomposition

Mode-1 unfolding
X(l) — UlC’()(Ug 02 UZ)T
rank = r1

Mode-2 unfolding
X)) =UC5(U; ® Us;)'
rank = ro

| The rank of X
Mode-3 unfolding is N0 Mmore than

X3 :Ugcg (U2®U1)T
(3) rank(é)rg the rank of Cy




What it means

e We can use the trace norm of an unfolding of a
tensor X to learn low-rank X.

Matricization
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Approach 1: As a matrix

e Pick a mode k, and hope that the tensor to be

learned is low rank in mode k.

minimize
XcRI1X XTIk
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Approach 2: Constrained optimization

e Constrain so that each unfolding of X is
simultaneously low rank.

K
1
¢ e . T Q _X 2 X o
Jminimize — o-{|Qo (V- X) || ;;%H Bl

Pro:  Jointly regularize every mode
Con: Strong constraint

Yk: tuning parameter usually set to 1.

See also Marco Signoretto et al., 10



Approach 3: Mixture of low-rank tensors

e Fach mixture component Z is regularized to be

low-rank only in mode-k.

minimize
Z1.,.. 2k

Pro;
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—ach Zx takes care of each mode
Con: Sum is not low-rank



Generalization error

Numerical experiment

e True tensor: Size 50x50x20, rank 7x8x9. No noise (A=0).

e Random train/test split.
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Computation time

e Convex formulation is also fast

20 —— As a Matrix
T ——— —— Constraint

A0F S o .......... o J ........ — Mixture
= | —— Tucker (large)
Py —— Tucker (exact)
E 30 L R R R .......... —
C — :
O 5
e E
-'g- 20 e .......... _
S 5
O .
O 5

10_ .............................................................................. 'I'T'I'_

- - = - =
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of observed elements



Phase transition behaviour

e Sum of true ranks= min(ry,rar3)+ min(ra,rar1)+ min(rs,rir)
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Summary

e Low-rank tensor completion can be computed in a convex
optimization problem using the trace norm of the unfoldings.

- No need to specify the rank beforehand.

e Convex formulation is more accurate and faster than

conventional EM-based Tucker decomposition.

e Curious “phase transition” found - compressive-sensing-

type analysis is an on-going work.

e Technical report: Arxiv:1010.0789 (including optimization)

e (Code:

- http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares/Tensor
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