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Deep models: how to train them efficiently?

• Vision
• ImageNet: 1.6 million images

• ResNet-152 [He+15]: 152 layers, 60 million 
parameters

• Speech
• NIST2000 Switchboard dataset: 2000 hours

• LACEA [Yu+16]: 22 layers, 65 million 
parameters (w/o language model)

He et al. (2015) “Deep Residual Learning for Image Recognition”
Yu et al. (2016) “Deep convolutional neural networks with layer-wise context expansion and attention”
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Data parallel SGD (bigger model)
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Data parallel SGD (biggggger model)
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If we could compress the gradients…

Minibatch 1 Minibatch 2



Inspiration: 1-bit SGD [Seide et al 2014]

• Quantization function

𝑄𝑖 𝑣 = ቊ
ҧ𝑣𝑝 if 𝑣𝑖 ≥ 0,

ҧ𝑣𝑛 otherwise

where ҧ𝑣𝑝 = mean( 𝑣𝑖 for 𝑖: 𝑣𝑖 ≥ 0 ), ҧ𝑣𝑛 = mean 𝑣𝑖 for 𝑖: 𝑣𝑖 < 0
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sign Compression rate ≈ 32x
n bits

Seide et al (2014) “1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs”

Unfortunately, no theoretical justification!



Our contribution

• We propose a (family of) new quantization function

• Unbiased stochastic gradient

• Allows super-constant ෨𝑂 𝑛 compression rate 

• Convergence guarantee in ෨𝑂 𝑛 more steps 

• Hyper-parameters control trade-off between convergence and compression

• We empirically show that the convergence does not slow-down too 

much



A simple randomized quantization function

• Quantization function

𝑄𝑖 𝑣 = 𝑣 2 ⋅ sgn 𝑣𝑖 ⋅ 𝜉𝑖 𝑣

where 𝜉𝑖 𝑣 = 1 with probability 𝑣𝑖 / 𝑣 2 and 0 otherwise.
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Compression rate ≈ 𝑛sign and locations

≈ 𝑛 bits and ints

Note that 𝐸 σ𝑖 𝜉𝑖(𝑣) ≤ Τ𝑣 1 𝑣 2 ≤ 𝑛



Properties of the proposed quantization function

• Quantization function

𝑄𝑖 𝑣 = 𝑣 2 ⋅ sgn 𝑣𝑖 ⋅ 𝜉𝑖 𝑣

1. Sparsity:

𝐸 ෍
𝑖
𝜉𝑖 𝑣 ≤ Τ𝑣 1 𝑣 2 ≤ 𝑛

2. Unbiasedness:
𝐸 𝑄𝑖 𝑣 = 𝑣𝑖

3. Second moment bound:
𝐸 𝑄 𝑣 2 = 𝑛 𝑣 2

where 𝜉𝑖 𝑣 = 1 with 
probability 𝑣𝑖 / 𝑣 2 and 0 
otherwise.



Why this is a better quantization

• 1-bit SGD approximates large and tiny coordinates to the same mean 
value

• The proposed quantization function avoids this by randomizing



Theorem

• The quantized gradient can be communicated in

𝐹 + 𝑛 log 𝑛 + log 2𝑒

bits in expectation

• F is the number of bits to represent one float number

• There are only 𝑛 non-zero coordinates in expectation

• For each non-zero entry we use O(log 𝑛 ) bits to encode the location and 1 

bit to encode the sign

• 𝑛 times reduction in per iteration communication



Bucketing

• Apply the quantization for every consecutive 𝑑 coordinates

• Bucket size d=1 corresponds to no quantization

• Reduced second moment bound => faster convergence

𝐸 𝑄𝑑 𝑣 2 = 𝑑 𝑣 2

• Communication cost

𝑛

𝑑
⋅ 𝐹 + 𝑑 log 𝑑 + log 2𝑒

Bucket 1 Bucket 2 Bucket n/d⋯

d d d

(𝑛/𝑑 buckets in total)



Generalized quantization sheme

• Quantization function
𝑄𝑖 𝑣; 𝑠 = 𝑣 2 ⋅ sgn 𝑣𝑖 ⋅ 𝜉𝑖 𝑣, 𝑠

where

• Note: s=1 reduces to the simple quantization function.

1/𝑠

ℓ/𝑠

(ℓ + 1)/𝑠

1

Τ𝑣𝑖 𝑣
2

ℓ = floor Τ𝑠 ⋅ 𝑣𝑖 𝑣 2

With probability ℓ + 1 − Τ𝑠 ⋅ 𝑣𝑖 𝑣 2,

otherwise

(s is a tuning parameter)



Properties of the generalized quantization scheme

• Quantization function

𝑄𝑖 𝑣; 𝑠 = 𝑣 2 ⋅ sgn 𝑣𝑖 ⋅ 𝜉𝑖 𝑣, 𝑠

• Properties

1. Sparsity

𝐸 𝜉 𝑣, 𝑠 0 ≤ 𝑠2 + 𝑛

2. Unbiasedness

𝐸 𝑄𝑖 𝑣; 𝑠 = 𝑣𝑖

3. Second moment bound

𝐸 𝑄 𝑣; 𝑠 2
2 ≤ 1 +min

𝑛

𝑠2
,
𝑛

𝑠
⋅ 𝑣 2

2

1/𝑠

ℓ/𝑠

(ℓ + 1)/𝑠

1

Τ𝑣𝑖 𝑣
2

ℓ = floor Τ𝑠 ⋅ 𝑣𝑖 𝑣 2

With prob
𝑝( 𝑣𝑖 / 𝑣 2, 𝑠)

otherwise

(Only 2 𝑣 2
2 for 𝑠 = 𝑛)



Sublinear Theorem (for small s)

• In expectation, the quantized gradient can be communicated in

𝐹 + 3 +
3

2
⋅ 1 + 𝑜 1 log

2 ⋅ 𝑠2 + 𝑛

𝑠2 + 𝑛
⋅ (𝑠2 + 𝑛)

bits

• Communicate the difference of non-zero locations (at most 𝑠2 + 𝑛 )

• Use Elias recursive coding

• Magnitude can be encoded by log (power per dimension)

• Recovers the simple case for s=1.



Linear Theorem (for large s)

• In expectation, the quantized gradient can be communicated in

𝐹 +
1 + 𝑜 1

2
log 1 +

𝑠2 +min 𝑛, 𝑠 𝑛

𝑛
+ 1 + 2 ⋅ 𝑛

bits

• Don’t communicate the locations

• For 𝑠 = 𝑛, we have the bound

𝐹 + 2.8𝑛

• Linear in dimension n but much smaller constant 2.8 compared to 

uncompressed float (32 bits) and second moment only 2 times worse.



Experiments



MNIST (digit recognition task)

• Two-layer Network (non-convex!):
• Input 784 -> hidden 4096 -> output 10

• Used the simple quantization scheme with bucketing (bucket size: d)



CIFAR-10 (object recognition task)

• Convolutional network (a small VGG network), 12 layers
• Input → Conv → BN → Conv → BN → … → Hidden 4096 → Hidden 4096 →

Hidden 4096 → Output 10

Training loss Test accuracy



Parallelization (preliminary)



Conclusion

• Simple, easy-to-implement quantization scheme

• Sublinear ( 𝑛) number of bits per iteration

• Performance guarantee

• Bucketing to control compression / convergence trade-off

• General quantization scheme

• Requires roughly 3 bits per coordinate and convergence guarantee only 2 

times worse compare to SGD



Generalized quantization sheme

• Quantization function
𝑄𝑖 𝑣; 𝑠 = 𝑣 2 ⋅ sgn 𝑣𝑖 ⋅ 𝜉𝑖 𝑣, 𝑠

where

𝜉𝑖 𝑣, 𝑠 = ቊ
ℓ/𝑠 with probability ℓ + 1 − Τ𝑠 ⋅ 𝑣𝑖 𝑣 2,

(ℓ + 1)/𝑠 otherwise,

with ℓ = floor Τ𝑠 ⋅ 𝑣𝑖 𝑣 2 and s is a hyper-parameter.

• Note: s=1 reduces to the simple quantization function.
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Thanks
Streamline icons

http://www.streamlineicons.com/

