Convex Optimization: Old Tricks for New Problems

Ryota Tomioka¹

¹The University of Tokyo

2011-08-26 @ DTU PhD Summer Course

Why care about convex optimization (and sparsity)?

A typical machine learning problem (1/2)

Ridge penalty

$$\phi_{\lambda} = rac{\lambda}{2} \sum_{j=1}^{n} w_{j}^{2}.$$

L1 penalty

$$\phi_{\lambda} = \lambda \sum_{j=1}^{n} |\mathbf{w}_{j}|.$$

A typical machine learning problem (2/2)

Logistic regression for binary $(y_i \in \{-1, +1\})$ classification:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \qquad \underbrace{\sum_{i=1}^m \log(1 + \exp(-y_i \langle \boldsymbol{x}_i, \boldsymbol{w} \rangle))}_{\text{data-fit}} \quad + \quad \underbrace{\phi_{\lambda}(\boldsymbol{w})}_{\text{Regularization}}$$

The logistic loss function

$$\log(1 + e^{-yz}) = -\log P(Y = y|z)$$

negative log-likelihood

where

$$P(Y = +1|z) = \frac{1}{1 + e^z}$$
logistic funct

logistic function

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood}} \underbrace{-\log P(w)}_{\text{neg. log prior}}$$

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood neg. log prior}} - \underbrace{\log P(w)}_{\text{neg. log likelihood neg. log prior}}$$

$$\Rightarrow q(w) = \frac{1}{Z}e^{-f(w)} \quad \text{(Bayesian posterior)}$$

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood neg. log prior}} \underbrace{-\log P(w)}_{\text{neg. log likelihood neg. log prior}}$$

$$\Rightarrow q(w) = \frac{1}{Z}e^{-f(w)} \quad \text{(Bayesian posterior)}$$

Inner approximations

- Variational Bayes
- Empirical Bayes

$$\begin{array}{ll} \text{minimize} & \underbrace{\mathbb{E}_q[f(w)]}_{\text{average energy}} + \underbrace{\mathbb{E}_q[\log q(w)]}_{\text{entropy}} \\ \text{s.t.} & q(w) \geq 0, \quad \int q(w) \mathrm{d}w = 1 \end{array}$$

where

$$f(w) = \underbrace{-\log P(D|w)}_{\text{neg. log likelihood neg. log prior}} - \underbrace{\log P(w)}_{\text{neg. log likelihood neg. log prior}}$$

$$\Rightarrow q(w) = \frac{1}{Z}e^{-f(w)} \quad \text{(Bayesian posterior)}$$

Inner approximations

- Variational Bayes
- Empirical Bayes

Outer approximations

Belief propagation
 See Wainwright &
 Jordan 08.

Convex optimization = standard forms (boring?)

Example: Linear Programming (LP)

Primal problem (P) min $c^{\top}x$, s.t. Ax = b, $x \ge 0$.

Dual problem $(D) \quad \text{max} \quad \boldsymbol{b}^{\top} \boldsymbol{y}, \\ \text{s.t.} \quad \boldsymbol{A}^{\top} \boldsymbol{y} \leq \boldsymbol{c}.$

Quadratic Programming (QP), Second Order Cone Programming (SOCP), Semidefinite Programming (SDP), etc...

Convex optimization = standard forms (boring?)

Example: Linear Programming (LP)

Primal problem $(P) \quad \min \quad \boldsymbol{c}^{\top}\boldsymbol{x}, \\ \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \geq 0.$

Dual problem (D) max $\boldsymbol{b}^{\top}\boldsymbol{y}$, s.t. $\boldsymbol{A}^{\top}\boldsymbol{v} < \boldsymbol{c}$.

Quadratic Programming (QP), Second Order Cone Programming (SOCP), Semidefinite Programming (SDP), etc...

- Pro: "Efficient" (but complicated) solvers are already available.
- Con: Have to rewrite your problem into one of them.

Easy problems (that we don't discuss)

- Objective f is differentiable & no constraint
 - L-BFGS quasi-Newton method
 - * requires only gradient.
 - * scales well.
 - Newton's method
 - requires also Hessian.
 - very accurate.
 - for medium sized problems.
- Differentiable f & simple box constraint
 - L-BFGS-B quasi-Newton method

Non-differentiability is everywhere

Support Vector Machine

$$\underset{\boldsymbol{w}}{\text{minimize}} \quad C \sum_{i=1}^{m} \ell_{H}(y_{i} \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle) + \frac{1}{2} \|\boldsymbol{w}\|^{2}$$

 Lasso (least absolute shrinkage and selection operator)

minimize
$$L(\mathbf{w}) + \lambda \sum_{j=1}^{n} |w_j|$$

 \Rightarrow Leads to sparse (most of w_i will be zero) solutions

Why we need sparsity

- Genome-wide association studies
 - Hundreds of thousands of genetic variations (SNPs), small number of participants (samples).
 - Number of genes responsible for the disease is small.
 - Solve classification problem (disease/healthy) with sparsity constraint.
- EEG/MEG source localization
 - Number of possible sources >> number of sensors
 - Needs sparsity at a group level

$$\phi_{\lambda}(\mathbf{w}) = \lambda \sum_{\mathfrak{g} \in \mathfrak{G}} \|\mathbf{w}_{\mathfrak{g}}\|_{2}$$

$$(\mathbf{w}_{\mathfrak{g}} \in \mathbb{R}^{3})$$

• Best convex approximation of $\|\boldsymbol{w}\|_0$.

• Best convex approximation of $\|\boldsymbol{w}\|_0$.

- Best convex approximation of $\|\boldsymbol{w}\|_0$.
- Threshold occurs for finite λ .

- Best convex approximation of $\|\boldsymbol{w}\|_0$.
- Threshold occurs for finite λ .
- Non-convex cases (p < 1) can be solved by re-weighted L1 minimization

Multiple kernels & multiple tasks

- Multiple kernel learning [Lanckriet et al., 04; Bach et al., 04;...]
 - ▶ Given: kernel functions $k_1(x, x'), ..., K_M(x, x')$
 - How do we optimally select and combine "good" kernels?

$$\begin{array}{ll} \underset{\substack{f_1 \in \mathcal{H}_1, \\ f_2 \in \mathcal{H}_2, \\ \dots, f_M \in \mathcal{H}_M}}{\text{minimize}} \quad C \sum_{i=1}^N \ell\left(y_i \sum_{m=1}^M f_m(x_i)\right) + \lambda \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m} \end{array}$$

Multiple kernels & multiple tasks

- Multiple kernel learning [Lanckriet et al., 04; Bach et al., 04;...]
 - ▶ Given: kernel functions $k_1(x, x'), ..., K_M(x, x')$
 - ▶ How do we optimally select and combine "good" kernels?

$$\begin{array}{ll} \text{minimize} & C \sum_{\substack{f_1 \in \mathcal{H}_1, \\ f_2 \in \mathcal{H}_2, \\ \dots, f_M \in \mathcal{H}_M}} & C \sum_{i=1}^N \ell\left(y_i \sum_{m=1}^M f_m(x_i)\right) + \lambda \sum_{m=1}^M \|f_m\|_{\mathcal{H}_m} \end{array}$$

- Multiple task learning [Evgeniou et al 05]
 - Given: two learning tasks.
 - Can we do better than solving them individually?

$$\underset{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{12}}{\text{minimize}} \quad \underbrace{L_{1}(\boldsymbol{w}_{1} + \boldsymbol{w}_{12})}_{\text{Task 1 loss}} + \underbrace{L_{2}(\boldsymbol{w}_{2} + \boldsymbol{w}_{12})}_{\text{Task 2 loss}} + \lambda(\|\boldsymbol{w}_{1}\| + \|\boldsymbol{w}_{2}\| + \|\boldsymbol{w}_{12}\|)$$

 \mathbf{w}_{12} : shared component, \mathbf{w}_{1} : Task 1 only component, \mathbf{w}_{2} : Task 2 only component.

Estimation of low-rank matrices (1/2)

Completion of partially observed low-rank matrix

Linear sum of singular-values \Rightarrow sparsity in the singular-values.

- Collaborative filtering (netflix)
- Sensor network localization

Estimation of low-rank matrices (2/2)

Classification of matrix shaped data X.

$$f(\pmb{X}) = \langle \pmb{W}, \pmb{X} \rangle + b$$

$$X = \begin{cases} S \\ S \\ S \\ S \end{cases}$$
 Second order statistics
$$X = \begin{cases} S \\ S \\ S \\ S \end{cases}$$
 Sensors
$$X = \begin{cases} S \\ S \\ S \\ S \end{cases}$$

 Classification of binary relationship between two objects (e.g., protein and drug)

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{W} \mathbf{y} + b$$

Agenda

- Convex optimization basics
 - Convex sets
 - Convex function
 - Conditions that guarantee convexity
 - Convex optimization problem
- Looking into more details
 - Proximity operators and IST methods
 - Conjugate duality and dual ascent
 - Augmented Lagrangian and ADMM

Convexity

Learning objectives

- Convex sets
- Convex function
- Conditions that guarantee convexity
- Convex optimization problem

Convex set

A subset $V \subseteq \mathbb{R}^n$ is a convex set

 \Leftrightarrow line segment between two arbitrary points $\mathbf{x}, \mathbf{y} \in V$ is included in V; that is,

$$\forall \boldsymbol{x}, \boldsymbol{y} \in V, \, \forall \lambda \in [0, 1], \quad \lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in V.$$

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a convex function

 \Leftrightarrow the function f is below any line segment between two points on f; that is.

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \forall \lambda \in [0, 1], \quad f((1 - \lambda)\mathbf{x} + \lambda \mathbf{y}) \leq (1 - \lambda)f(\mathbf{x}) + \lambda f(\mathbf{y})$$

(Jensen's inequality)

NB: when the strict inequality < holds, f is called strictly convex.

Convex function

A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a convex function

 \Leftrightarrow the epigraph of f is a convex set; that is

$$V_f := \{(t, \mathbf{x}) : (t, \mathbf{x}) \in \mathbb{R}^{n+1}, t \geq f(\mathbf{x})\}$$
 is convex.

NB: when the strict inequality < holds, f is called strictly convex.

Exercise

• Show that the indicator function $\delta_C(\mathbf{x})$ of a convex set C is a convex function. Here

$$\delta_{\mathcal{C}}(\mathbf{x}) = egin{cases} 0 & \text{if } \mathbf{x} \in \mathcal{C}, \\ +\infty & \text{otherwise.} \end{cases}$$

- Hessian $\nabla^2 f(\mathbf{x})$ is positive semidefinite (if f is differentiable) Examples
 - (Negative) entropy is a convex function.

$$f(p) = \sum_{i=1}^{n} p_i \log p_i,$$

$$\nabla^2 f(p) = \operatorname{diag}(1/p_1, \dots, 1/p_n) \succeq 0.$$

- Hessian $\nabla^2 f(\mathbf{x})$ is positive semidefinite (if f is differentiable) Examples
 - ► (Negative) entropy is a convex function.

$$f(p) = \sum_{i=1}^{n} p_i \log p_i,$$

$$\nabla^2 f(p) = \operatorname{diag}(1/p_1, \dots, 1/p_n) \succeq 0.$$

▶ log determinant is a concave (-f is convex) function

$$f(\mathbf{X}) = \log |\mathbf{X}| \quad (\mathbf{X} \succeq 0),$$

$$\nabla^2 f(\mathbf{X}) = -\mathbf{X}^{-\top} \otimes \mathbf{X}^{-1} \preceq 0$$

• Maximum over convex functions $\{f_j(x)\}_{j=1}^{\infty}$

$$f(\mathbf{x}) := \max_{j} f_j(\mathbf{x})$$
 $(f_j(\mathbf{x}) \text{ is convex for all } j)$

The same as saying "intersection of convex sets is a convex set"

• Maximum over convex functions $\{f(x; \alpha) : \alpha \in \mathbb{R}^n\}$

$$f(\mathbf{x}) := \max_{\boldsymbol{lpha} \in \mathbb{R}^n} f(\mathbf{x}; \boldsymbol{lpha})$$

Example

Quadratic over linear is a convex function

$$f(\boldsymbol{y}, \boldsymbol{\Sigma}) = \max_{\boldsymbol{\alpha}} \left[-\frac{1}{2} \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma} \boldsymbol{\alpha} + \boldsymbol{\alpha}^{\top} \boldsymbol{y} \right] \quad (\boldsymbol{\Sigma} \succ 0)$$

• Maximum over convex functions $\{f(x; \alpha) : \alpha \in \mathbb{R}^n\}$

$$f(\mathbf{x}) := \max_{\boldsymbol{lpha} \in \mathbb{R}^n} f(\mathbf{x}; \boldsymbol{lpha})$$

Example

Quadratic over linear is a convex function

$$f(\mathbf{y}, \mathbf{\Sigma}) = \max_{\alpha} \left[-\frac{1}{2} \alpha^{\top} \mathbf{\Sigma} \alpha + \alpha^{\top} \mathbf{y} \right] \quad (\mathbf{\Sigma} \succ 0)$$
$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{\Sigma}^{-1} \mathbf{y}$$

• Minimum of jointly convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$

• Minimum of jointly convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$

$$= \frac{1}{q} \sum_{j=1}^n |x_j|^q \quad (q = \frac{2p}{1+p})$$

• Minimum of jointly convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$

$$= \frac{1}{q} \sum_{j=1}^n |x_j|^q \quad (q = \frac{2p}{1+p})$$

Schatten 1- norm (sum of singularvalues)

$$f(\boldsymbol{X}) = \min_{\boldsymbol{\Sigma} \succ 0} \frac{1}{2} \left(\text{Tr} \left(\boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{\top} \right) + \text{Tr} \left(\boldsymbol{\Sigma} \right) \right)$$

• Minimum of jointly convex function f(x, y)

$$f(x) := \min_{y \in \mathbb{R}^n} f(x, y)$$
 is convex.

Examples

Hierarchical prior minimization

$$f(\mathbf{x}) = \min_{d_1, \dots, d_n \ge 0} \frac{1}{2} \sum_{j=1}^n \left(\frac{x_j^2}{d_j} + \frac{d_j^p}{p} \right) \quad (p \ge 1)$$

$$= \frac{1}{q} \sum_{i=1}^n |x_j|^q \quad (q = \frac{2p}{1+p})$$

Schatten 1- norm (sum of singularvalues)

$$\begin{split} f(\boldsymbol{X}) &= \min_{\boldsymbol{\Sigma} \succeq 0} \frac{1}{2} \left(\operatorname{Tr} \left(\boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{X}^{\top} \right) + \operatorname{Tr} \left(\boldsymbol{\Sigma} \right) \right) \\ &= \operatorname{Tr} \left((\boldsymbol{X}^{\top} \boldsymbol{X})^{1/2} \right) = \sum_{j=1}^{r} \sigma_{j}(\boldsymbol{X}). \end{split}$$

Convex optimization problem

f: convex function, g: concave function (-g is convex), C: convex set.

$$\underset{\boldsymbol{x}}{\mathsf{minimize}} \quad f(\boldsymbol{x}),$$

s.t.
$$\mathbf{x} \in C$$
.

$$\max_{\mathbf{y}} \max_{\mathbf{y}} g(\mathbf{y}),$$

s.t.
$$y \in C$$
.

Why?

- local optimum ⇒ global optimum
- duality (later) can be used to check convergence
 - ⇒ We can be *sure* that we are doing the right thing!

Proximity operators and IST methods

Learning objectives

- (Projected) gradient method
- Iterative shrinkage/thresholding (IST) method
- Acceleration

Proximity view on gradient descent

"Linearize and Prox"

$$\mathbf{x}^{t+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(\nabla f(\mathbf{x}^t) (\mathbf{x} - \mathbf{x}^t) + \frac{1}{2\eta_t} ||\mathbf{x} - \mathbf{x}^t||^2 \right)$$
$$= \mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t)$$

- Step-size should satisfy η_t ≤ 1/L(f).
- L(f): the Lipschitz constant

$$\|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\| \le L(f)\|\mathbf{y} - \mathbf{x}\|.$$

 L(f)=upper bound on the maximum eigenvalue of the Hessian

Constraint minimization problem

• What do we do, if we have a constraint?

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}), \\
\mathbf{x} \in \mathbb{R}^n & \text{s.t.} & \mathbf{x} \in C.
\end{array}$$

Constraint minimization problem

• What do we do, if we have a constraint?

minimize
$$f(\mathbf{x})$$
, s.t. $\mathbf{x} \in C$.

can be equivalently written as

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{x}) + \delta_{\boldsymbol{C}}(\boldsymbol{x}),$$

where $\delta_C(\mathbf{x})$ is the indicator function of the set C.

Projected gradient method (Bertsekas 99; Nesterov 03)

Linearize the objective f, δ_C is the indicator of the constraint C

$$\begin{aligned} \boldsymbol{x}^{t+1} &= \operatorname*{argmin}_{\boldsymbol{x}} \left(\nabla f(\boldsymbol{x}^t) (\boldsymbol{x} - \boldsymbol{x}^t) + \delta_{\boldsymbol{C}}(\boldsymbol{x}) + \frac{1}{2\eta_t} \| \boldsymbol{x} - \boldsymbol{x}^t \|_2^2 \right) \\ &= \operatorname*{argmin}_{\boldsymbol{x}} \left(\delta_{\boldsymbol{C}}(\boldsymbol{x}) + \frac{1}{2\eta_t} \| \boldsymbol{x} - (\boldsymbol{x}^t - \eta_t \nabla f(\boldsymbol{x}^t)) \|_2^2 \right) \\ &= \operatorname*{proj}_{\boldsymbol{C}} (\boldsymbol{x}^t - \eta_t \nabla f(\boldsymbol{x}^t)). \end{aligned}$$

- Requires $\eta_t \leq 1/L(f)$.
- Convergence rate

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{L(f)\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2k}$$

 Need the projection proj_C to be easy to compute

Ideas for regularized minimization

Constrained minimization problem

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{x}) + \delta_{C}(\boldsymbol{x}).$$

⇒ need to compute the projection

$$m{x}^{t+1} = \operatorname*{argmin}_{m{x}} \left(\delta_{\mathcal{C}}(m{x}) + \frac{1}{2\eta_t} \|m{x} - m{y}\|_2^2
ight)$$

Regularized minimization problem

minimize
$$f(\mathbf{x}) + \phi_{\lambda}(\mathbf{x})$$

⇒ need to compute the proximity operator

$$oldsymbol{x}^{t+1} = \operatorname*{argmin}_{oldsymbol{x}} \left(\phi_{\lambda}(oldsymbol{x}) + rac{1}{2\eta_t} \|oldsymbol{x} - oldsymbol{y}\|_2^2
ight)$$

Proximal Operator: generalization of projection

$$\operatorname{prox}_{\phi_{\lambda}}(\boldsymbol{z}) = \operatorname*{argmin}_{\boldsymbol{x}} \left(\phi_{\lambda}(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 \right)$$

- $\phi_{\lambda} = \delta_{C}$: Projection onto a convex set $\operatorname{prox}_{\delta_{C}}(\boldsymbol{z}) = \operatorname{proj}_{C}(\boldsymbol{z})$.
- $\phi_{\lambda}(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$: Soft-Threshold

$$\operatorname{prox}_{\lambda}(\boldsymbol{z}) = \operatorname{argmin}_{\boldsymbol{x}} \left(\lambda \| \boldsymbol{x} \|_{1} + \frac{1}{2} \| \boldsymbol{x} - \boldsymbol{z} \|_{2}^{2} \right)$$
$$= \begin{cases} z_{j} + \lambda & (z_{j} < -\lambda), \\ 0 & (-\lambda \leq z_{j} \leq \lambda), \\ z_{j} - \lambda & (z_{j} > \lambda). \end{cases}$$

- Prox can be computed easily for a separable ϕ_{λ} .
- Non-differentiability is OK.

Iterative Shrinkage Thresholding (IST)

$$\begin{aligned} \boldsymbol{x}^{t+1} &= \operatorname*{argmin}_{\boldsymbol{x}} \left(\nabla f(\boldsymbol{x}^t) (\boldsymbol{x} - \boldsymbol{x}^t) + \phi_{\lambda}(\boldsymbol{x}) + \frac{1}{2\eta_t} \| \boldsymbol{x} - \boldsymbol{x}^t \|_2^2 \right) \\ &= \operatorname*{argmin}_{\boldsymbol{x}} \left(\phi_{\lambda}(\boldsymbol{x}) + \frac{1}{2\eta_t} \| \boldsymbol{x} - (\boldsymbol{x}^t - \eta_t \nabla f(\boldsymbol{x}^t)) \|_2^2 \right) \\ &= \operatorname*{prox}_{\lambda \eta_t} (\boldsymbol{x}^t - \eta_t \nabla f(\boldsymbol{x}^t)). \end{aligned}$$

 The same condition for η_t, the same O(1/k) convergence (Beck & Teboulle 09)

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{L(f) \|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2k}$$

- If the Prox operator $\operatorname{prox}_{\lambda}$ is easy, it is simple to implement.
- AKA Forward-Backward Splitting (Lions & Mercier 76)

IST summary

Solve minimization problem

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \quad f(\boldsymbol{w}) + \phi_{\lambda}(\boldsymbol{w})$$

by iteratively computing

$$\mathbf{w}^{t+1} = \operatorname{prox}_{\lambda \eta_t}(\mathbf{w}^t - \eta_t \nabla f(\mathbf{w}^t)).$$

Exercise: Derive prox operator for

Ridge regularization

$$\phi_{\lambda}(\mathbf{w}) = \lambda \sum_{j=1}^{n} w_{j}^{2}$$

Elastic-net regularization

$$\phi_{\lambda}(\mathbf{w}) = \lambda \sum_{j=1}^{n} \left((1-\theta)|\mathbf{w}_{j}| + \theta \mathbf{w}_{j}^{2} \right).$$

Exercise 1: implement an L1 regularized logistic regression via IST

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} \qquad \underbrace{\sum_{i=1}^m \log(1 + \exp(-y_i \, \langle \boldsymbol{x}_i, \, \boldsymbol{w} \rangle))}_{\text{data-fit}} \quad + \underbrace{\lambda \sum_{j=1}^n |w_j|}_{\text{Regularization}}$$

Hint: define

$$f_{\ell}(\boldsymbol{z}) = \sum_{i=1}^{m} \log(1 + \exp(-z_i)).$$

Then the problem is

minimize
$$f_{\ell}(\mathbf{A}\mathbf{w}) + \lambda \sum\limits_{j=1}^{n} |\mathbf{w}_{j}|$$
 where $\mathbf{A} = \begin{pmatrix} y_{1}\mathbf{x}_{1}^{\top} \\ y_{2}\mathbf{x}_{2}^{\top} \\ \vdots \\ y_{m}\mathbf{x}_{m}^{\top} \end{pmatrix}$

Some hints

Compute the gradient of the loss term

$$abla_{\boldsymbol{w}} f_{\ell}(\boldsymbol{A} \boldsymbol{w}) = -\boldsymbol{A}^{\top} \left(\frac{\exp(-z_i)}{1 + \exp(-z_i)} \right)_{i=1}^{m}$$

The gradient step becomes

$$\mathbf{w}^{t+\frac{1}{2}} = \mathbf{w}^t + \eta_t \mathbf{A}^{\top} \left(\frac{\exp(-z_i)}{1 + \exp(-z_i)} \right)_{i=1}^m$$

Then compute the proximity operator

$$\mathbf{w}^{t+1} = \operatorname{prox}_{\lambda \eta_t}(\mathbf{w}^{t+\frac{1}{2}})$$

$$= \begin{cases} w_j^{t+\frac{1}{2}} + \lambda \eta_t & (w_j^{t+\frac{1}{2}} < -\lambda \eta_t), \\ 0 & (-\lambda \eta_t \le w_j^{t+\frac{1}{2}} \le \lambda \eta_t), \\ w_j^{t+\frac{1}{2}} - \lambda \eta_t & (w_j^{t+\frac{1}{2}} > \lambda \eta_t). \end{cases}$$

$$L(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

$$\phi_{\lambda}(\mathbf{X}) = \lambda \sum_{j=1}^{r} \sigma_{j}(\mathbf{X})$$
 (S₁-norm).

$$L(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

$$\phi_{\lambda}(\boldsymbol{X}) = \lambda \sum_{j=1}^{r} \sigma_{j}(\boldsymbol{X})$$
 (S₁-norm).

gradient:

$$\nabla L(\boldsymbol{X}) = \Omega^{\top}(\Omega(\boldsymbol{X} - \boldsymbol{Y}))$$

$$L(\boldsymbol{X}) = \frac{1}{2} \|\Omega(\boldsymbol{X} - \boldsymbol{Y})\|^2.$$

$$\phi_{\lambda}(\mathbf{X}) = \lambda \sum_{j=1}^{r} \sigma_{j}(\mathbf{X})$$
 (S₁-norm).

gradient:

$$\nabla L(\boldsymbol{X}) = \Omega^{\top}(\Omega(\boldsymbol{X} - \boldsymbol{Y}))$$

Prox operator (Singular Value Thresholding):

$$\operatorname{prox}_{\lambda}(\boldsymbol{Z}) = \boldsymbol{U} \operatorname{max}(\boldsymbol{S} - \lambda \boldsymbol{I}, 0) \boldsymbol{V}^{\top}.$$

$$L(\boldsymbol{\textit{X}}) = \frac{1}{2}\|\Omega(\boldsymbol{\textit{X}} - \boldsymbol{\textit{Y}})\|^2.$$

$$\phi_{\lambda}(\mathbf{X}) = \lambda \sum_{j=1}^{r} \sigma_{j}(\mathbf{X})$$
 (S₁-norm).

gradient:

$$\nabla L(\boldsymbol{X}) = \Omega^{\top}(\Omega(\boldsymbol{X} - \boldsymbol{Y}))$$

Prox operator (Singular Value Thresholding):

$$\operatorname{prox}_{\lambda}(\boldsymbol{Z}) = \boldsymbol{U} \operatorname{max}(\boldsymbol{S} - \lambda \boldsymbol{I}, 0) \boldsymbol{V}^{\top}.$$

Iteration:

$$\mathbf{\textit{X}}^{t+1} = \text{prox}_{\lambda \eta_t} \Big(\underbrace{(\mathbf{\textit{I}} - \eta_t \Omega^\top \Omega)(\mathbf{\textit{X}}^t)}_{\text{fill in missing}} + \underbrace{\eta_t \Omega^\top \Omega(\mathbf{\textit{Y}}^t)}_{\text{observed}} \Big)$$

• When $\eta_t = 1$, fill missings with predicted values \mathbf{X}^t , overwrite the observed with observed values, then soft-threshold.

FISTA: accelerated version of IST (Beck & Teboulle 09;

Nesterov 07)

- Initialize \mathbf{x}^0 appropriately, $\mathbf{y}^1 = \mathbf{x}^0$, $s_1 = 1$.
- ② Update x^t :

$$\mathbf{x}^t = \mathsf{prox}_{\lambda \eta_t} (\mathbf{y}^t - \eta_t \nabla L(\mathbf{y}^t)).$$

1 Update y^t :

$$\mathbf{y}^{t+1} = \mathbf{x}^t + \left(\frac{\mathbf{s}_t - 1}{\mathbf{s}_{t+1}}\right) (\mathbf{x}^t - \mathbf{x}^{t-1}),$$

where
$$s_{t+1} = (1 + \sqrt{1 + 4s_t^2})/2$$
.

- The same per iteration complexity. Converges as $O(1/k^2)$.
- Roughly speaking, y^t predicts where the IST step should be computed.

Effect of acceleration

From Beck & Teboulle 2009 SIAM J. IMAGING SCIENCES Vol. 2, No. 1, pp. 183-202

Conjugate duality and dual ascent

- Convex conjugate function
- Lagrangian relaxation and dual problem
- Dual ascent

Conjugate duality

The convex conjugate f^* of a function f:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{R}^n} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$

Since the maximum over linear functions is always convex, *f* need not be convex.

Convex conjugate function

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$

$$\Leftrightarrow -f^*(\mathbf{y}) = \inf_{\mathbf{x}} (f(\mathbf{x}) - \langle \mathbf{x}, \mathbf{y} \rangle)$$

$$= \inf_{\mathbf{x}, \mathbf{b}} \mathbf{b},$$
s.t. $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle + \mathbf{b}.$

Convex conjugate function

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$

$$\Leftrightarrow -f^*(\mathbf{y}) = \inf_{\mathbf{x}} (f(\mathbf{x}) - \langle \mathbf{x}, \mathbf{y} \rangle)$$

$$= \inf_{\mathbf{x}, \mathbf{b}} \mathbf{b},$$
s.t. $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle + \mathbf{b}.$

Convex conjugate function

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$

$$\Leftrightarrow -f^*(\mathbf{y}) = \inf_{\mathbf{x}} (f(\mathbf{x}) - \langle \mathbf{x}, \mathbf{y} \rangle)$$

$$= \inf_{\mathbf{x}, \mathbf{b}} \mathbf{b},$$
s.t. $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle + \mathbf{b}.$

Convex conjugate function

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{x}, \mathbf{y} \rangle - f(\mathbf{x}))$$

$$\Leftrightarrow -f^*(\mathbf{y}) = \inf_{\mathbf{x}} (f(\mathbf{x}) - \langle \mathbf{x}, \mathbf{y} \rangle)$$

$$= \inf_{\mathbf{x}, \mathbf{b}} \mathbf{b},$$
s.t. $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y} \rangle + \mathbf{b}.$

Demo

http://www.ibis.t.u-tokyo.ac.jp/ryotat/applets/pld/

Quadratic function

$$f(x) = \frac{x^2}{2\sigma^2}$$

$$f^*(y) = \frac{\sigma^2 y^2}{2}$$

Logistic loss function

$$f(x) = \log(1 + \exp(-x))$$

Logistic loss function

$$f(x) = \log(1 + \exp(-x))$$

$$f^*(-y) = y \log(y) + (1-y) \log(1-y)$$

L1 regularizer

$$f(x) = |x|$$

L1 regularizer

Bi-conjugate f^{**} may be different from f

For nonconvex f,

Our optimization problem:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(\boldsymbol{Aw}) + g(\boldsymbol{w})$$

$$\begin{pmatrix}
\text{For example} \\
f(\mathbf{z}) = \frac{1}{2} ||\mathbf{z} - \mathbf{y}||_2^2 \\
\text{(squared loss)}
\end{pmatrix}$$

Our optimization problem:

$$\left(\begin{array}{l} \text{For example} \\ f(\boldsymbol{z}) = \frac{1}{2} \|\boldsymbol{z} - \boldsymbol{y}\|_2^2 \\ (\text{squared loss}) \end{array} \right)$$

Equivalently written as

$$\begin{array}{ll} \underset{\boldsymbol{z} \in \mathbb{R}^m, \boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} & f(\boldsymbol{z}) + g(\boldsymbol{w}), \\ \text{s.t.} & \boldsymbol{z} = \boldsymbol{A}\boldsymbol{w} & \text{(equality constraint)} \end{array}$$

Our optimization problem:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(\boldsymbol{Aw}) + g(\boldsymbol{w})$$

$$\left(\begin{array}{c} \text{For example} \\ f(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_2^2 \\ (\text{squared loss}) \end{array} \right)$$

Equivalently written as

$$\begin{array}{ll} \underset{\boldsymbol{z} \in \mathbb{R}^m, \boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} & f(\boldsymbol{z}) + g(\boldsymbol{w}), \\ \text{s.t.} & \boldsymbol{z} = \boldsymbol{A}\boldsymbol{w} & \text{(equality constraint)} \end{array}$$

Lagrangian relaxation

$$\underset{\boldsymbol{z},\boldsymbol{w}}{\mathsf{minimize}} \quad \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\boldsymbol{\alpha}) = f(\boldsymbol{z}) + g(\boldsymbol{w}) + \boldsymbol{\alpha}^\top (\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w})$$

Our optimization problem:

$$\underset{\boldsymbol{w} \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(\boldsymbol{Aw}) + g(\boldsymbol{w})$$

$$\left(\begin{array}{c} \text{For example} \\ f(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_2^2 \\ (\text{squared loss}) \end{array} \right)$$

Equivalently written as

$$\begin{array}{ll} \underset{\boldsymbol{z} \in \mathbb{R}^m, \boldsymbol{w} \in \mathbb{R}^n}{\text{minimize}} & f(\boldsymbol{z}) + g(\boldsymbol{w}), \\ \text{s.t.} & \boldsymbol{z} = \boldsymbol{A}\boldsymbol{w} & \text{(equality constraint)} \end{array}$$

Lagrangian relaxation

$$\underset{\boldsymbol{z}.\boldsymbol{w}}{\mathsf{minimize}} \quad \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) = f(\boldsymbol{z}) + g(\boldsymbol{w}) + \alpha^\top (\boldsymbol{z} - \boldsymbol{A}\boldsymbol{w})$$

- As long as z = Aw, the relaxation is exact.
- Minimum of \mathcal{L} is no greater than the minimum of the original.

Weak duality

$$\inf_{oldsymbol{z},oldsymbol{w}} \mathcal{L}(oldsymbol{z},oldsymbol{w},oldsymbol{lpha}) \leq oldsymbol{
ho}^* \quad ext{(primal optimal)}$$

proof

$$\inf_{\boldsymbol{z},\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) = \inf \left(\inf_{\boldsymbol{z} = \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha), \ \inf_{\boldsymbol{z} \neq \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) \right)$$

Weak duality

$$\inf_{\boldsymbol{z},\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) \leq p^* \quad \text{(primal optimal)}$$

proof

$$\inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) = \inf \left(\inf_{\boldsymbol{z} = \boldsymbol{A} \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha), \inf_{\boldsymbol{z} \neq \boldsymbol{A} \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) \right)$$

$$= \inf \left(\rho^*, \inf_{\boldsymbol{z} \neq \boldsymbol{A} \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) \right)$$

Weak duality

$$\inf_{oldsymbol{z},oldsymbol{w}} \mathcal{L}(oldsymbol{z},oldsymbol{w},lpha) \leq oldsymbol{p}^* \quad ext{(primal optimal)}$$

proof

$$\begin{split} \inf_{\boldsymbol{z},\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) &= \inf \left(\inf_{\boldsymbol{z} = \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha), \ \inf_{\boldsymbol{z} \neq \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) \right) \\ &= \inf \left(\boldsymbol{p}^*, \inf_{\boldsymbol{z} \neq \boldsymbol{A}\boldsymbol{w}} \mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha) \right) \\ &< \boldsymbol{p}^* \end{split}$$

From the above argument

$$d(\alpha) := \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha)$$

is a lower bound for p^* for any α . Why don't we maximize over \mathbf{w} ?

From the above argument

$$d(\alpha) := \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha)$$

is a lower bound for p^* for any α . Why don't we maximize over \mathbf{w} ?

Dual problem

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} \mathsf{d}(\boldsymbol{\alpha})$$

Note

$$\sup_{\alpha}\inf_{\boldsymbol{z},\boldsymbol{w}}\mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha)=d^*\leq p^*=\inf_{\boldsymbol{z},\boldsymbol{w}}\sup_{\alpha}\mathcal{L}(\boldsymbol{z},\boldsymbol{w},\alpha)$$

If $d^* = p^*$, strong duality holds. This is the case if f and g both closed and convex.

$$d(lpha) = \inf_{oldsymbol{z},oldsymbol{w}} \mathcal{L}(oldsymbol{z},oldsymbol{w},lpha) \quad (\leq oldsymbol{p}^*)$$

$$d(\alpha) = \inf_{\mathbf{z}, \mathbf{w}} \mathcal{L}(\mathbf{z}, \mathbf{w}, \alpha) \quad (\leq p^*)$$
$$= \inf_{\mathbf{z}, \mathbf{w}} \left(f(\mathbf{z}) + g(\mathbf{w}) + \alpha^{\top} (\mathbf{z} - \mathbf{A}\mathbf{w}) \right)$$

$$\begin{aligned} d(\alpha) &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) \quad (\leq p^*) \\ &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{z}) + g(\boldsymbol{w}) + \alpha^\top (\boldsymbol{z} - \boldsymbol{A} \boldsymbol{w}) \right) \\ &= \inf_{\boldsymbol{z}} \left(f(\boldsymbol{z}) + \langle \alpha, \boldsymbol{z} \rangle \right) + \inf_{\boldsymbol{w}} \left(g(\boldsymbol{w}) - \left\langle \boldsymbol{A}^\top \alpha, \boldsymbol{w} \right\rangle \right) \end{aligned}$$

$$\begin{split} d(\alpha) &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) \quad (\leq p^*) \\ &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{z}) + g(\boldsymbol{w}) + \alpha^\top (\boldsymbol{z} - \boldsymbol{A} \boldsymbol{w}) \right) \\ &= \inf_{\boldsymbol{z}} \left(f(\boldsymbol{z}) + \langle \alpha, \boldsymbol{z} \rangle \right) + \inf_{\boldsymbol{w}} \left(g(\boldsymbol{w}) - \left\langle \boldsymbol{A}^\top \alpha, \boldsymbol{w} \right\rangle \right) \\ &= -\sup_{\boldsymbol{z}} \left(\langle -\alpha, \boldsymbol{z} \rangle - f(\boldsymbol{z}) \right) - \sup_{\boldsymbol{w}} \left(\left\langle \boldsymbol{A}^\top \alpha, \boldsymbol{w} \right\rangle - g(\boldsymbol{w}) \right) \end{split}$$

$$\begin{split} d(\alpha) &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \mathcal{L}(\boldsymbol{z}, \boldsymbol{w}, \alpha) \quad (\leq \rho^*) \\ &= \inf_{\boldsymbol{z}, \boldsymbol{w}} \left(f(\boldsymbol{z}) + g(\boldsymbol{w}) + \alpha^\top (\boldsymbol{z} - \boldsymbol{A} \boldsymbol{w}) \right) \\ &= \inf_{\boldsymbol{z}} \left(f(\boldsymbol{z}) + \langle \alpha, \boldsymbol{z} \rangle \right) + \inf_{\boldsymbol{w}} \left(g(\boldsymbol{w}) - \left\langle \boldsymbol{A}^\top \alpha, \boldsymbol{w} \right\rangle \right) \\ &= -\sup_{\boldsymbol{z}} \left(\langle -\alpha, \boldsymbol{z} \rangle - f(\boldsymbol{z}) \right) - \sup_{\boldsymbol{w}} \left(\left\langle \boldsymbol{A}^\top \alpha, \boldsymbol{w} \right\rangle - g(\boldsymbol{w}) \right) \\ &= -f^*(-\alpha) - g^*(\boldsymbol{A}^\top \alpha) \end{split}$$

Fenchel's duality

$$\inf_{\boldsymbol{w} \in \mathbb{R}^n} (f(\boldsymbol{A}\boldsymbol{w}) + g(\boldsymbol{w})) = \sup_{\boldsymbol{\alpha} \in \mathbb{R}^m} \left(-f^*(-\alpha) - g^*(\boldsymbol{A}^\top \alpha) \right)$$

M. W. Fenchel

Examples

Logistic regression with L1 regularization

$$f(z) = \sum_{i=1}^{m} \log(1 + \exp(-z_i)), \quad g(w) = \lambda ||w||_1.$$

Support vector machine (SVM)

$$f(\mathbf{z}) = C \sum_{i=1}^{m} \max(0, 1 - z_i), \quad g(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2.$$

Example 1: Logistic regression with L1 regularization

Primal

$$\min_{\boldsymbol{w}} f(\boldsymbol{y} \circ \boldsymbol{X} \boldsymbol{w}) + \phi_{\lambda}(\boldsymbol{w})$$

$$\begin{cases} f(\boldsymbol{z}) = \sum_{i=1}^{m} \log(1 + \exp(-z_i)), \\ \phi_{\lambda}(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_{1}. \end{cases}$$

Dual

$$\max_{\boldsymbol{\alpha}} \quad -f^*(-\boldsymbol{\alpha}) - \phi_{\lambda}^*(\boldsymbol{X}^{\top}(\boldsymbol{\alpha} \circ \boldsymbol{y}))$$

$$\begin{cases} f^*(-\boldsymbol{\alpha}) = \sum_{i=1}^m \alpha_i \log(\alpha_i) \\ +(1-\alpha_i)\log(1-\alpha_i), \\ \phi_{\lambda}^*(\boldsymbol{v}) = \begin{cases} 0 & (\|\boldsymbol{w}\|_{\infty} \leq \lambda), \\ +\infty & (\text{otherwise}). \end{cases}$$

Example 2: Support vector machine

Primal

$$\min_{oldsymbol{w}} f(oldsymbol{y} \circ oldsymbol{X} oldsymbol{w}) + \phi_{\lambda}(oldsymbol{w})$$

$$\begin{cases} f(oldsymbol{z}) = C \sum_{i=1}^{m} \max(0, 1 - z_i) \\ \phi_{\lambda}(oldsymbol{w}) = \frac{1}{2} \|oldsymbol{w}\|^2. \end{cases}$$

Dual

$$\min_{\boldsymbol{w}} f(\boldsymbol{y} \circ \boldsymbol{X} \boldsymbol{w}) + \phi_{\lambda}(\boldsymbol{w})$$

$$\begin{cases} f(\boldsymbol{z}) = C \sum_{i=1}^{m} \max(0, 1 - z_i) \\ \phi_{\lambda}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2. \end{cases}$$

$$\max_{\boldsymbol{\alpha}} -f^*(-\boldsymbol{\alpha}) - \phi_{\lambda}^*(\boldsymbol{X}^{\top}(\boldsymbol{\alpha} \circ \boldsymbol{y}))$$

$$\begin{cases} f^*(-\boldsymbol{\alpha}) = \begin{cases} \sum_{i=1}^{m} -\alpha_i & (0 \leq \boldsymbol{\alpha} \leq C), \\ +\infty & (\text{oterwise}), \end{cases}$$

$$\phi_{\lambda}^*(\boldsymbol{v}) = \frac{1}{2} \|\boldsymbol{v}\|^2.$$

Dual ascent

Assume for a moment that the dual $d(\alpha)$ is differentiable.

For a given α^t

$$d(\alpha^t) = \inf_{oldsymbol{z}, oldsymbol{w}} \left(f(oldsymbol{z}) + g(oldsymbol{w}) + \left\langle lpha^t, oldsymbol{z} - oldsymbol{A} oldsymbol{w}
ight
angle
ight)$$

and one can show that (Chapter 6, Bertsekas 99)

$$\nabla_{\boldsymbol{\alpha}} d(\boldsymbol{\alpha}^t) = \boldsymbol{z}^{t+1} - \boldsymbol{A} \boldsymbol{w}^{t+1}$$

where

$$\mathbf{z}^{t+1} = \underset{\mathbf{z}}{\operatorname{argmin}} \left(f(\mathbf{z}) + \left\langle \boldsymbol{\alpha}^t, \mathbf{z} \right\rangle \right)$$
 $\mathbf{w}^{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(g(\mathbf{w}) - \left\langle \mathbf{A}^{\top} \boldsymbol{\alpha}^t, \mathbf{w} \right\rangle \right)$

Dual ascent (Uzawa's method)

Minimize the Lagrangian wrt x and z:

$$\begin{split} & \boldsymbol{z}^{t+1} = \operatorname{argmin}_{\boldsymbol{z}} \left(\boldsymbol{f}(\boldsymbol{z}) + \left\langle \boldsymbol{\alpha}^t, \boldsymbol{z} \right\rangle \right), \\ & \boldsymbol{w}^{t+1} = \operatorname{argmin}_{\boldsymbol{w}} \left(\boldsymbol{g}(\boldsymbol{w}) - \left\langle \boldsymbol{A}^\top \boldsymbol{\alpha}^t, \boldsymbol{w} \right\rangle \right). \end{split}$$

Update the Lagrangian multiplier α^t : $\alpha^{t+1} = \alpha^t + \eta_t(\mathbf{z}^{t+1} - \mathbf{A}\mathbf{w}^{t+1}).$

- Pro: Very simple.
- Con: When f* or g* is non-differentiable, it is a dual subgradient method (convergence more tricky)

NB: f^* is differentiable $\Leftrightarrow f$ is strictly convex.

H. Uzawa

Exercise 2: Matrix completion via dual ascent (Cai et al. 08)

minimize
$$\underbrace{\frac{1}{2\lambda}\|\boldsymbol{z}-\boldsymbol{y}\|^2}_{\text{Strictly convex}} + \underbrace{\left(\tau\|\boldsymbol{X}\|_{\text{tr}} + \frac{1}{2}\|\boldsymbol{X}\|^2\right)}_{\text{Strictly convex}},$$

s.t.
$$\Omega(\boldsymbol{X}) = \boldsymbol{z}$$
.

Exercise 2: Matrix completion via dual ascent (Cai et al. 08)

JL

Lagrangian:

$$\mathcal{L}(\boldsymbol{X}, \boldsymbol{z}, \alpha) = \underbrace{\frac{1}{2\lambda} \|\boldsymbol{z} - \boldsymbol{y}\|^2}_{=f(\boldsymbol{z})} + \underbrace{\left(\tau \|\boldsymbol{X}\|_{S_1} + \frac{1}{2} \|\boldsymbol{X}\|^2\right)}_{=g(\boldsymbol{x})} + \alpha^{\top}(\boldsymbol{z} - \Omega(\boldsymbol{X})).$$

Dual ascent

$$\left\{ \begin{array}{l} \textbf{\textit{X}}^{t+1} = \mathsf{prox}_{\tau} \left(\Omega^{\top}(\boldsymbol{\alpha}^t) \right) \quad \text{(Singular-Value Thresholding)} \\ \textbf{\textit{z}}^{t+1} = \textbf{\textit{y}} - \lambda \boldsymbol{\alpha}^t \\ \boldsymbol{\alpha}^{t+1} = \boldsymbol{\alpha}^t + \eta_t (\textbf{\textit{z}}^{t+1} - \Omega(\textbf{\textit{X}}^{t+1})) \end{array} \right.$$

Augmented Lagrangian and ADMM

Learning objectives

- Structured sparse estimation
- Augmented Lagrangian
- Alternating direction method of multipliers

Total Variation based image denoising [Rudin, Osher, Fatemi 92]

Original X₀

Observed Y

In one dimension

• Fused lasso [Tibshirani et al. 05]

minimize
$$\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \lambda \sum_{j=1}^{n-1} |x_{j+1} - x_j|$$

Structured sparsity estimation

TV denoising

Fused lasso

minimize
$$\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \lambda \sum_{j=1}^{n-1} |x_{j+1} - x_j|$$

Structured sparsity estimation

TV denoising

Fused lasso

minimize
$$\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \lambda \sum_{j=1}^{n-1} |x_{j+1} - x_j|$$

Structured sparse estimation problem

Structured sparse estimation problem

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\mathsf{minimize}} \quad \underbrace{f(\boldsymbol{x})}_{\mathsf{data-fit}} + \underbrace{\phi_{\lambda}(\boldsymbol{A}\boldsymbol{x})}_{\mathsf{regularization}}$$

- Not easy to compute prox operator (because it is non-separable)
 difficult to apply IST-type methods.
- Dual is not necessarily differentiable
 difficult to apply dual ascent.

Forming the *augmented* Lagrangian

Structured sparsity problem

Equivalently written as

$$\begin{array}{ll} \underset{\pmb{w} \in \mathbb{R}^n}{\text{minimize}} & \textit{f}(\pmb{x}) + \underbrace{\phi_{\lambda}(\pmb{z})}_{\text{separable!}}, \\ \text{s.t.} & \pmb{z} = \pmb{A}\pmb{x} & \text{(equality constraint)} \end{array}$$

Forming the *augmented* Lagrangian

Structured sparsity problem

Equivalently written as

$$\begin{array}{ll} \underset{\pmb{w} \in \mathbb{R}^n}{\text{minimize}} & \textit{f}(\pmb{x}) + \underbrace{\phi_{\lambda}(\pmb{z})}_{\text{separable!}} \; , \\ \text{s.t.} & \pmb{z} = \pmb{A}\pmb{x} \qquad \text{(equality constraint)} \end{array}$$

Augmented Lagrangian function

$$\mathcal{L}_{\eta}(\boldsymbol{x},\boldsymbol{z},\alpha) = f(\boldsymbol{x}) + \phi_{\lambda}(\boldsymbol{z}) + \alpha^{\top}(\boldsymbol{z} - \boldsymbol{A}\boldsymbol{x}) + \frac{\eta}{2}\|\boldsymbol{z} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2}$$

Augmented Lagrangian Method

Augmented Lagrangian function

$$\mathcal{L}_{\eta}(\boldsymbol{x},\boldsymbol{z},\boldsymbol{\alpha}) = f(\boldsymbol{x}) + \phi_{\lambda}(\boldsymbol{z}) + \boldsymbol{\alpha}^{\top}(\boldsymbol{z} - \boldsymbol{A}\boldsymbol{x}) + \frac{\eta}{2}\|\boldsymbol{z} - \boldsymbol{A}\boldsymbol{x}\|^{2}.$$

Augmented Lagrangian method (Hestenes 69, Powell 69)

Minimize the AL function wrt
$$\boldsymbol{x}$$
 and \boldsymbol{z} :
$$(\boldsymbol{x}^{t+1}, \boldsymbol{z}^{t+1}) = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{z} \in \mathbb{R}^m} \mathcal{L}_{\eta}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\alpha}^t).$$

Update the Lagrangian multiplier: $\alpha^{t+1} = \alpha^t + \eta(\mathbf{z}^{t+1} - \mathbf{A}\mathbf{x}^{t+1}).$

$$\alpha^{t+1} = \alpha^t + \eta(\mathbf{z}^{t+1} - \mathbf{A}\mathbf{x}^{t+1})$$

- Pro: The dual is always differentiable due to the penalty term.
- Con: Cannot minimize over x and z independently

Alternating Direction Method of Multipliers (ADMM; Gabay & Mercier 76)

Minimize the AL function $\mathcal{L}_{\eta}(\mathbf{x}, \mathbf{z}^t, \alpha^t)$ wrt \mathbf{x} :

Minimize the AL function $\mathcal{L}_{\eta}({m{x}}^{t+1},{m{z}},{m{lpha}}^t)$ wrt ${m{z}}$:

Update the Lagrangian multiplier: $\alpha^{t+1} = \alpha^t + \eta(\mathbf{z}^{t+1} - \mathbf{A}\mathbf{x}^{t+1}).$

$$\alpha^{t+1} = \alpha^t + \eta(\mathbf{z}^{t+1} - \mathbf{A}\mathbf{x}^{t+1}).$$

- Looks ad-hoc but convergence can be shown rigorously.
- Stability does not rely on the choice of step-size η .
- The newly updated \mathbf{x}^{t+1} enters the computation of \mathbf{z}^{t+1} .

Alternating Direction Method of Multipliers (ADMM; Gabay & Mercier 76)

$$\begin{cases} & \text{Minimize the AL function } \mathcal{L}_{\eta}(\boldsymbol{x}, \boldsymbol{z}^t, \boldsymbol{\alpha}^t) \text{ wrt } \boldsymbol{x}: \\ & \boldsymbol{x}^{t+1} = \underset{\boldsymbol{x} \in \mathbb{R}^n}{\operatorname{argmin}} \left(f(\boldsymbol{x}) - \boldsymbol{\alpha}^{t\top} \boldsymbol{A} \boldsymbol{x} + \frac{\eta}{2} \| \boldsymbol{z}^t - \boldsymbol{A} \boldsymbol{x} \|_2^2 \right). \\ & \text{Minimize the AL function } \mathcal{L}_{\eta}(\boldsymbol{x}^{t+1}, \boldsymbol{z}, \boldsymbol{\alpha}^t) \text{ wrt } \boldsymbol{z}: \\ & \text{Update the Lagrangian multiplier:} \\ & \boldsymbol{\alpha}^{t+1} = \boldsymbol{\alpha}^t + \eta(\boldsymbol{z}^{t+1} - \boldsymbol{A} \boldsymbol{x}^{t+1}). \end{cases}$$

- Looks ad-hoc but convergence can be shown rigorously.
- Stability does not rely on the choice of step-size η .
- The newly updated x^{t+1} enters the computation of z^{t+1} .

Alternating Direction Method of Multipliers (ADMM; Gabay & Mercier 76)

$$\begin{cases} & \text{Minimize the AL function } \mathcal{L}_{\eta}(\boldsymbol{x}, \boldsymbol{z}^t, \boldsymbol{\alpha}^t) \text{ wrt } \boldsymbol{x} \text{:} \\ & \boldsymbol{x}^{t+1} = \underset{\boldsymbol{x} \in \mathbb{R}^n}{\operatorname{argmin}} \left(f(\boldsymbol{x}) - \boldsymbol{\alpha}^{t\top} \boldsymbol{A} \boldsymbol{x} + \frac{\eta}{2} \| \boldsymbol{z}^t - \boldsymbol{A} \boldsymbol{x} \|_2^2 \right). \\ & \text{Minimize the AL function } \mathcal{L}_{\eta}(\boldsymbol{x}^{t+1}, \boldsymbol{z}, \boldsymbol{\alpha}^t) \text{ wrt } \boldsymbol{z} \text{:} \\ & \boldsymbol{z}^{t+1} = \underset{\boldsymbol{z} \in \mathbb{R}^m}{\operatorname{argmin}} \left(\phi_{\lambda}(\boldsymbol{z}) + \boldsymbol{\alpha}^{t\top} \boldsymbol{z} + \frac{\eta}{2} \| \boldsymbol{z} - \boldsymbol{A} \boldsymbol{x}^{t+1} \|_2^2 \right). \\ & \text{Update the Lagrangian multiplier:} \\ & \boldsymbol{\alpha}^{t+1} = \boldsymbol{\alpha}^t + \eta(\boldsymbol{z}^{t+1} - \boldsymbol{A} \boldsymbol{x}^{t+1}). \end{cases}$$

- Looks ad-hoc but convergence can be shown rigorously.
- Stability does not rely on the choice of step-size η .
- The newly updated x^{t+1} enters the computation of z^{t+1} .

Exercise: implement an ADMM for fused lasso

Fused lasso

$$\underset{\boldsymbol{x}}{\text{minimize}} \quad \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_2^2 + \lambda\|\boldsymbol{A}\boldsymbol{x}\|_1$$

- What is the loss function f?
- What is the regularizer g?
- What is the matrix A for fused lasso?
- What is the prox operator for the regularizer g?

Conclusion

- Three approaches for various sparse estimation problems
 - Iterative shrinkage/thresholding proximity operator
 - Uzawa's method convex conjugate function
 - ► ADMM combination of the above two
- Above methods go beyond black-box models (e.g., gradient descent or Newton's method) – takes better care of the problem structures.
- These methods are simple enough to be implemented rapidly, but should not be considered as a silver bullet.
 - ⇒ Trade-off between:
 - Quick implementation test new ideas rapidly
 - Efficient optimization more inspection/try-and-error/cross validation

Topics we did not cover

- Stopping criterion
 - Care must be taken when making a comparison.
- Beyond polynomial convergence $O(1/k^2)$
 - Dual Augmented Lagrangian (DAL) converges super-linearly o(exp(-k)). Software

```
http://mloss.org/software/view/183/
(This is limited to non-structured sparse estimation.)
```

- Beyond convexity
 - ▶ Dual problem is always convex. It provides a lower-bound of the original problem. If $p^* = d^*$, you are done!
 - Dual ascent (or dual decomposition) for sequence labeling in natural language processing; see [Wainwright, Jaakkola, Willsky 05; Koo et al. 10]
 - Difference of convex (DC) programming.
 - ► Eigenvalue problem.
- Stochastic optimization
 - Good tutorial by Nathan Srebro (ICML2010)

A new book "Optimization for Machine Learning" is coming out from the MIT press.

Contributed authors including: A. Nemirovksi, D. Bertsekas, L. Vandenberghe, and more.

Possible projects

- Compare the three approaches, namely IST, dual ascent, and ADMM, and discuss empirically (and theoretically) their pros and cons.
- Apply one of the methods discussed in the lecture to model some real problem with (structured) sparsity or low-rank matrix.

Recent surveys

- Tomioka, Suzuki, & Sugiyama (2011) Augmented Lagrangian Methods for Learning, Selecting, and Combining Features. In Sra, Nowozin, Wright., editors, Optimization for Machine Learning, MIT Press.
- Combettes & Pesquet (2010) Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer-Verlag.
- Boyd, Parikh, Peleato, & Eckstein (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers.

Textbooks

- Rockafellar (1970) Convex Analysis. Princeton University Press.
- Bertsekas (1999) Nonlinear Programming. Athena Scientific.
- Nesterov (2003) Introductory Lectures on Convex Optimization: A Basic Course. Springer.
- Boyd & Vandenberghe. (2004) Convex optimization, Cambridge University Press.

IST/FISTA

- Moreau (1965) Proximité et dualité dans un espace Hilbertien. Bul letin de la S. M. F.
- Nesterov (2007) Gradient Methods for Minimizing Composite Objective Function.
- Beck & Teboulle (2009) A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J Imag Sci 2, 183–202.

Dual ascent

- Arrow, Hurwicz, & Uzawa (1958) Studies in Linear and Non-Linear Programming. Stanford University Press.
- Chapter 6 in Bertsekas (1999).
- Wainwright, Jaakkola, & Willsky (2005) Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans IT, 51(11).

Augmented Lagrangian

- Rockafellar (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. of Oper. Res. 1.
- Bertsekas (1982) Constrained Optimization and Lagrange Multiplier Methods. Academic Press.
- Tomioka, Suzuki, & Sugiyama (2011) Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparse Learning. JMLR 12.

ADMM

- Gabay & Mercier (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2, 17–40.
- Lions & Mercier (1979) Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J Numer Anal 16, 964–979.
- Eckstein & Bertsekas (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators.

Matrices

- Srebro, Rennie, & Jaakkola (2005) Maximum-Margin Matrix Factorization. Advances in NIPS 17, 1329–1336.
- Cai, Candès, & Shen (2008) A singular value thresholding algorithm for matrix completion.
- Tomioka, Suzuki, Sugiyama, & Kashima (2010) A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices. In ICML 2010.
- Mazumder, Hastie, & Tibshirani (2010) Spectral Regularization Algorithms for Learning Large Incomplete Matrices. JMLR 11, 2287–2322.

Multi-task/Mutliple kernel learning

- Evgeniou, Micchelli, & Pontil (2005) Learning Multiple Tasks with Kernel Methods. JMLR 6, 615–637.
- Lanckriet, Christiani, Bartlett, Ghaoui, & Jordan (2004) Learning the Kernel Matrix with Semidefinite Programming.
- Bach, Thibaux, & Jordan (2005) Computing regularization paths for learning multiple kernels. Advances in NIPS, 73–80.

Structured sparsity

- Tibshirani, Saunders, Rosset, Zhu and Knight. (2005) Sparsity and smoothness via the fused lasso. J. Roy. Stat. Soc. B, 67.
- Rudin, Osher, Fetemi. (1992) Nonlinear total variation based noise removal algorithms.
 Physica D: Nonlinear Phenomena, 60.
- Goldstein & Osher (2009) Split Bregman method for L1 regularization problems. SIAM J. Imag. Sci. 2.
- Mairal, Jenatton, Obozinski, & Bach. (2011) Convex and network flow optimization for structured sparsity.

Bayes & Probabilistic Inference

 Wainwright & Jordan (2008) Graphical Models, Exponential Families, and Variational Inference.