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Why care about convex optimization (and sparsity)?
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A typical machine learning problem (1/2)
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A typical machine learning problem (2/2)
Logistic regression for binary (y; € {—1,+1}) classification:

minierEize ilog(1+exp(—}’i<xi,w>)) +  oa(w)
weR” i=1

-~ ~ ——
data-fit Regularization

The logistic loss function
f(x)=log(1 -

log(1 + &%) = —log P(Y = y|2) PR

negative log-likelihood

where
P(Y =+1|z) =

y<X,w>

1+ e?
logistic function

-5 0 5

N
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— N—— —
average energy entropy
st q(w) >0, /q(w)dw =1
where
f(w) = —log P(D|w) —log P(w)

neg. log likelihood neg. log prior
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— N—— —
average energy entropy
st q(w) >0, /q(w)dw =1
where
f(w) = —log P(D|w) —log P(w)

neg. log likelihood neg. log prior
—f(w)

= q(w)= %e (Bayesian posterior)
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— N—— —
average energy entropy
st q(w) >0, /q(w)dw =1
where
f(w) = —log P(D|w) —log P(w)

neg. log likelihood neg. log prior
—f(w)

= q(w)= %e (Bayesian posterior)

Inner approximations

@ Variational Bayes
@ Empirical Bayes
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Bayesian inference as a convex optimization

minimize  Eq[f(w)] +Eg[log q(w)]
q ——— ~——_— ——

average energy entropy

s.t. g(w) >0, /q(w)dw: 1

where
f(w) = Iog P(D|w) log P(w)
’ neg. Iog likelihood neg. Iog prior
= q(w)= 264 (W) (Bayesian posterior)
Inner approximations Outer approximations

@ Belief propagation
@ Variational Bayes See Wainwright &
@ Empirical Bayes Jordan 08.
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Convex optimization = standard forms (boring?)

Example: Linear Programming (LP)

Primal problem Dual problem
(P) min ¢'x, (D) max b'y,
st. Ax=b,x>0. st. Aly<e.

Quadratic Programming (QP), Second Order Cone Programming
(SOCP), Semidefinite Programming (SDP), etc...
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Convex optimization = standard forms (boring?)

Example: Linear Programming (LP)

Primal problem Dual problem
(P) min ¢'x, (D) max b'y,
st. Ax=b,x>0. st. Aly<e.

Quadratic Programming (QP), Second Order Cone Programming
(SOCP), Semidefinite Programming (SDP), etc...

@ Pro: “Efficient” (but complicated) solvers are already available.

@ Con: Have to rewrite your problem into one of them.
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Easy problems (that we don’t discuss)

@ Obijective f is differentiable & no constraint
» L-BFGS quasi-Newton method

* requires only gradient.
* scales well.

» Newton’s method

* requires also Hessian.
* very accurate.
* for medium sized problems.

@ Differentiable f & simple box constraint
» L-BFGS-B quasi-Newton method
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Non-differentiability is everywhere

@ Support Vector Machine
max(0,1-yz)

m
. 1 2
minimize C ;1 C(yi (xi,w)) + §HWH

@ Lasso (least absolute shrinkage and
selection operator)

n
minimize L(w)+ Az; |w;|
j:
= Leads to sparse (most of w; will be zero) solutions
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Why we need sparsity

@ Genome-wide association studies

» Hundreds of thousands of genetic
variations (SNPs), small number of
participants (samples).

» Number of genes responsible for the
disease is small.

» Solve classification problem
(disease/healthy) with sparsity
constraint.

@ EEG/MEG source localization

» Number of possible sources >
number of sensors
» Needs sparsity at a group level

NOEPSAP

ged
(wy € R?)
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L1-regularization and sparsity

@ Best convex approximation of ||w||o.
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L1-regularization and sparsity

@ Best convex approximation of ||w/|o.
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L1-regularization and sparsity

@ Best convex approximation of ||w/|o.
@ Threshold occurs for finite A.
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L1-regularization and sparsity

@ Best convex approximation of ||w||o.
@ Threshold occurs for finite .

@ Non-convex cases (p < 1) can be solved by
re-weighted L1 minimization

2r

15F

1h

0.5
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Multiple kernels & multiple tasks

@ Multiple kernel learning [Lanckriet et al., 04; Bach et al., 04;...]
» Given: kernel functions ki (x, x’), ..., Ku(x, x)
» How do we optimally select and combine “good” kernels?

N M

mifnimize CZE (y;2%21 fm(Xi)> + )\Z | fm |
Ry, =1 m=1

< EHNY
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Multiple kernels & multiple tasks

@ Multiple kernel learning [Lanckriet et al., 04; Bach et al., 04;...]
» Given: kernel functions ki (x, x’), ..., Ku(x, x)
» How do we optimally select and combine “good” kernels?

N M
mifnimize CZE (y;Z%:1 fm(Xi)> + )\Z | fm |
< EHNY

@ Multiple task learning [Evgeniou et al 05]
» Given: two learning tasks.
» Can we do better than solving them individually?

minimize  Ly(wq + W12) + Lo(wa + we2) +A([[ w1l + [[wa| + [[wiz]])
Wi, W2,Wi2

Task 1 loss Task 2 loss

w1o: shared component, w: Task 1 only component, w»: Task 2
only component.
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Estimation of low-rank matrices (1/2)
@ Completion of partially observed low-rank matrix

N 1
minimize §||Q(X_ Y)|I + M|X]|s,

r
where [X||s, :=> oj(X) (Schatten 1-norm)
=

Linear sum of singular-values = sparsity in the singular-values.

» Collaborative filtering (netflix)

» Sensor network localization

Users

Movies
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Estimation of low-rank matrices (2/2)
@ Classification of matrix shaped data X.

» Multivariate Time Series Time

F(X) = (W, X) + b ¥ —

Sensors

» Second order statistics

X =

Sensors
]

. o

it

@ Classification of binary relationship between two objects (e.g.,
protein and drug)

Protein Drug
D > W

(&

{

fx,y)=x"Wy+b
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Agenda

@ Convex optimization basics

Convex sets

Convex function

Conditions that guarantee convexity
Convex optimization problem

@ Looking into more details

» Proximity operators and IST methods
» Conjugate duality and dual ascent
» Augmented Lagrangian and ADMM

vV vy VvYyy
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Convexity

Learning objectives
@ Convex sets
@ Convex function
@ Conditions that guarantee convexity
@ Convex optimization problem
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Convex set
A subset V C R" is a convex set

& line segment between two arbitrary points x, y € V is included in V;
that is,

vx,y € V,vAe[0,1], Ax+(1-X\NyeV.
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Convex function

A function f : R” — R U {+o0} is a convex function

< the function f is below any line segment between two points on f;
that is,

Vx,y e R". VA e [0,1], f(1-=XNx+Xy) < (1 —=Nf(x)+ \(y)

(Jensen’s inequality)
Non-convex | poasrn

Convex

fly)

Johan Jensen
ArEs 1859 — 1925

NB: when the strict inequality < holds, f is

Ryota Tomioka (Univ Tokyo)

called strictly convex.
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Convex function

A function f : R” — R U {+o0} is a convex function

< the epigraph of f is a convex set; that is

Vi = {(t,x) : (t,x) € R™" t > f(x)} is convex.

Epigraph

v.f(y)
(x,f(x))

NB: when the strict inequality < holds, f is called strictly convex.
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Exercise

@ Show that the indicator function éz(x) of a convex set C is a
convex function. Here

dc(x) =

0 if x e C,
400 otherwise.
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Conditions that guarantee convexity (1/3)
@ Hessian V?f(x) is positive semidefinite (if  is differentiable)

Examples
» (Negative) entropy is a convex function.

n
f(p) = > _ pilog pi,
e

V2f(p) = diag(1/p1, .., 1/Pn) = 0.
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Conditions that guarantee convexity (1/3)
@ Hessian V?f(x) is positive semidefinite (if  is differentiable)

Examples
» (Negative) entropy is a convex function.

n
f(p) = > _ pilog pi,
e

=N

V2f(p) = diag(1/p1, .., 1/Pn) = 0.

» log determinant is a concave (—f is convex) function

f(X) =log|X| (X =0),
VH(X)=-X"TeX '=<0

-

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26 20/72



Conditions that guarantee convexity (2/3)

@ Maximum over convex functions {f(x)}?,

f(x) := max f;(x) (fi(x) is convex for all j)
J

The same as saying “intersection of convex sets is a convex set”
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Conditions that guarantee convexity (2/3)

@ Maximum over convex functions {f(x; a) : a« € R"}

f(x) := max f(x; o)
acR?

Example

@ Quadratic over linear is a convex function

f(y,X) = max [—%aTZa +a'y| (Z>0)
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Conditions that guarantee convexity (2/3)

@ Maximum over convex functions {f(x; a) : a« € R"}

f(x) := max f(x; o)
acR?

Example

@ Quadratic over linear is a convex function

f(y,X) = max —%aTZa +a'y| (Z>0)

L
=y X
5Y y
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Conditions that guarantee convexity (3/3)
@ Minimum of jointly convex function f(x, y)

f = min f iS convex.
(x) = min f(x, ) is convex

Examples

» Hierarchical prior minimization

12 X2 aP
_ ; - RS
f(x) = _ min j:1<0,/,+p> (0>1)
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Conditions that guarantee convexity (3/3)
@ Minimum of jointly convex function f(x, y)

f = min f iS convex.
(x) = min f(x, ) is convex

Examples
» Hierarchical prior minimization 2321.5
I~ (% 9 =
f(x) d1’”nj|(1r3202j:1 (d, + p) (p>1)
1 2p -
q;] 1 (a=17,)
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Conditions that guarantee convexity (3/3)
@ Minimum of jointly convex function f(x, y)

f(x) := min f(x,y) is convex.
yeRn

Examples

» Hierarchical prior minimization

X2

N RN
f(x) —d1’”njbr220§; (d,+

i
p

o°
) (p=>1)

1 & 2p
_ 1 1q —
= q/_§:1 X7 (q 1+p)

» Schatten 1- norm (sum of singularvalues)

f(X) = min % (Tr (x=7'XT) + T (x))
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Conditions that guarantee convexity (3/3)
@ Minimum of jointly convex function f(x, y)

f(x) := min f(x,y) is convex.
yeRn

Examples

» Hierarchical prior minimization

X2

N RN
f(x) —d1’”njbr220§; (d,+

i
p

o°
) (p=>1)

1 & 2p
_ 1 1q —
= q/_§:1 X7 (q 1+p)

» Schatten 1- norm (sum of singularvalues)

f(X) = min % (Tr (x=7'XT) + T (x))

~Tr ((xTX)‘/Z) - i ai(X).

j=
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Convex optimization problem
f: convex function, g: concave function (—g is convex), C: convex set.
mini;nize f(x), maxiymize a(y),

st xeC. st. yeC.

Why?
@ local optimum =- global optimum
@ duality (later) can be used to check convergence

= We can be sure that we are doing the right thing!
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Proximity operators and IST methods

Learning objectives
@ (Projected) gradient method
@ lterative shrinkage/thresholding (IST) method
@ Acceleration
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Proximity view on gradient descent
“Linearize and Prox”
x™1 = argmin <Vf(xt)(x —xh)+ 1 | x — xt||2)
x 2nt

= x' = nVi(x")

@ Step-size should satisfy
ne < 1/L(f).
@ L(f): the Lipschitz constant

IVH(y) = Vx|l < L(Oly — x]|.

@ L(f)=upper bound on the o thl n
maximum eigenvalue of the X
Hessian ’
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Constraint minimization problem

@ What do we do, if we have a constraint?
minimize  f(x),
XcR"
st. xeC.
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Constraint minimization problem

@ What do we do, if we have a constraint?
minimize  f(x),
XcR"
st. xeC.

@ can be equivalently written as

minimize f(x) + dco(x),
XeR"

where j¢(x) is the indicator function of the set C.

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26

27/72



Projected gradient method (Bertsekas 99; Nesterov 03)
Linearize the objective f, ¢ is the indicator of the constraint C

’
x*1 = argmin (Vf(xt)(x — x") +dc(x) + 2—||X - Xt”g)
X Nt

. 1
—argmin (5030 + 51X~ (¢t~ VA
X nt

= projo(x! — nVF(x")).

@ Requires n; < 1/L(f).
@ Convergence rate

L(f)l1xo — x*|I3
2k

f(x*) — f(x*) <

@ Need the projection proj. to
be easy to compute
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Ideas for regularized minimization
Constrained minimization problem

minimize f(x) + dc(x).
= need to compute the projection
xt+t — argmin (30(x) + 5 x - yIB)
x 2nt
Regularized minimization problem
minimize  f(X) + ¢\ (x)
XERN

= need to compute the proximity operator
. 1
i1 — argmin (013 + 5. [x - yI3 )
x 2n
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Proximal Operator: generalization of projection

. 1
prox,, (2) — argmin (1(x) + 51x — 2I3)

@ ¢, = 0¢: Projection onto a convex set

prox;,(z) = projc(2).
@ ¢x(x) = \||x||1: Soft-Threshold ST@)
. 1
prox, (2) — argmin (Alxls + 5 x - zI3) p
X ‘) \ 5
Zi+XA (Z< =),
=<0 (A <z <)),
zZi— XA (z>)).

@ Prox can be computed easily for a separable ¢,.
@ Non-differentiability is OK.
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lterative Shrinkage Thresholding (IST)

x*1 = argmin <Vf(xt)(x —x") + oa(x) + lHX - Xt||§>
X 21t

~ argrin (@(x) ol (- mw<xf)>us)

= prox,,, (x' — nVf(x")).

@ The same condition for »;, the
same O(1/k) convergence (Beck
& Teboulle 09)

IX0 — x*|?
2k

f(Xk) _ f(X*) < L(f)

@ If the Prox operator prox, is easy,
it is simple to implement.

@ AKA Forward-Backward Splitting
(Lions & Mercier 76)

Ryota Tomioka (Univ Tokyo) Optimization

7\\\\\\\\/&
\\\\\\\\/p
AR AAA <\
f NS
I~ -
.

N 2
SR T

D
RS S AN
KT AA I

TS S S ST
XSS S S
AAST ST

2011-08-26

31/72



IST summary
Solve minimization problem

minimize f(w) + ¢x(w)
weR”

by iteratively computing
Wt—H = prox)\m(wt - ntvf(wt))

Exercise: Derive prox operator for
@ Ridge regularization

PA(W) = )\Z Wj2
=1

@ Elastic-net regularization

n

NIEPSY ((1 —0)|wj| + 9Wj2) .

j=1
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Exercise 1: implement an L1 regularized logistic
regression via IST

weR"

m n
minimize S log(1 +exp(—yi (xi,w))) + > |w
i=1 =1

]
~- - \ /
data-fit Regularization
Hint: define
m
fi(z) = log(1 + exp(-z)).
i=1
Then the problem is
yixi "
L n YaXa T
minimize f,(Aw)+ XY |w;| where A=
=1 :
! YmeT

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26
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Some hints

@ Compute the gradient of the loss term

B exp(—z) \"
Vwly(Aw) = —AT (H-ex—p(—zi))i:1

© The gradient step becomes

t+1 ot T exp(—z;) ”
wrE=wtnd (1 + exp(—2)

© Then compute the proximity operator

i=1

’
t+3 :

t+=
W ® + Ant (Wj+2 < =),

_ t+3
=30 (=A< w2 < ),
t+3 t+3
w, 2 —Ane (W2 > M)
Ryota Tomioka (Univ Tokyo)
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Matrix completion via IST (Mazumder et al. 10)
Loss function: Regularization:

1 r
L(X) = 51X = V). ox(X) = A" oi(X)  (Sy-norm).
=
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Matrix completion via IST (Mazumder et al. 10)

Loss function:
1 2
L(X) = slaX - V)|
gradient:

VLX) = QT(QX - Y))

Ryota Tomioka (Univ Tokyo)

Regularization:

(X)) =21 oi(X) (Si-norm).
j=1

Optimization
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Matrix completion via IST (Mazumder et al. 10)
Loss function: Regularization:

1 r
L(X) = 51X = V). ox(X) = A" oi(X)  (Sy-norm).
=

gradient:

T Prox operator (Singular Value
VL(X) =Q (X -Y)) Thresholding):

prox,(Z) = Umax(S — M, 0)V'.
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Matrix completion via IST (Mazumder et al. 10)
Loss function: Regularization:

1 r
L(X) = 51X = V). ox(X) =2 0j(X) (Sy-norm).
j=1

gradient:

T Prox operator (Singular Value
VLX) =Q (X -Y)) Thresholding):

prox,(Z) = Umax(S — M, 0)V'.
lteration:

X = prox,,, ((l — 02" Q)(X") + UtQTQ(Yt))

~
fill in missing observed

@ When 1 = 1, fill missings with predicted values X!, overwrite the
observed with observed values, then soft-threshold.
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FISTA: accelerated version of IST (Beck & Teboulle 09;

Nesterov 07)
@ Initialize x° appropriately, y' = x°0 s = 1.
@ Update x':
x! = prox,,, (y' — nVL(y")).

© Update y:

St — 1
yt+1 :Xt—l- < t > (xt_xtf1),
St+1

where s;1 = (1+ (/1 +4s?)/2.

@ The same per iteration complexity. Converges as O(1/k?).

@ Roughly speaking, y! predicts where the IST step should be
computed.
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Effect of acceleration

- = =ISTA
----- MTWIST

Without acceleration

Ieration

0 ZObO 4060 6600 8050 10000
Number of iterations

From Beck & Teboulle 2009 SIAM J. IMAGING SCIENCES
Vol. 2, No. 1, pp. 183-202
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Conjugate duality and dual ascent
@ Convex conjugate function

@ Lagrangian relaxation and dual problem
@ Dual ascent
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Conjugate duality

The convex conjugate f* of a function f:

f*(y) = sup ((x,y) — f(x))

XeR"

f(x)

Since the maximum over linear functions is always convex, f need not
be convex.
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Conjugate duality (dual view)

Convex conjugate function

—f*(y) is the minimum y-intercept of the hyperplanes that has slope y
and have intersection with the graph of f(x).

F(y) = sup ((x.y) — f(x))
& —f(y) = inf(f(x) - (x,¥))
= Lng b,

st f(x)=(x,y)+b.

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26 40/72



Conjugate duality (dual view)

Convex conjugate function

—f*(y) is the minimum y-intercept of the hyperplanes that has slope y
and have intersection with the graph of f(x).

F*(y) = sup ((x, ) — 1(x))
& —f(y) = inf(f(x) - (x,y))
= Lntf)b,

st f(x)=(x,y)+b.
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Conjugate duality (dual view)

Convex conjugate function

—f*(y) is the minimum y-intercept of the hyperplanes that has slope y
and have intersection with the graph of f(x).

F*(y) = sup ((x, ) — 1(x))
& —f(y) = inf(f(x) - (x,y))
= Lntf)b,

st f(x)=(x,y)+b.
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Conjugate duality (dual view)

Convex conjugate function

—f*(y) is the minimum y-intercept of the hyperplanes that has slope y
and have intersection with the graph of f(x).

F(y) = sup((x,y) — f(x))
& —F(y) =inf (f(x) - (x, )
:Lntf)b,

st f(x)=(x,y)+b.

PN
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Demo

http://www.1ibis.t.u-tokyo.ac.jp/ryotat/applets/pld/
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ Quadratic function

2 2,,2
X oy
*
) = 2 =7
f(x) f*(y)
\ 4
A Y ,/
A Sol.” 7
~ PR ’
N So7
PR LR
- ~ ’ ~
P N S
Phd N ~
- LNIRS Se
’ ~
’ N
’ Y
7’ A
s, N
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ Logistic loss function

f(x) = log(1 +exp(—x))

Ryota Tomioka (Univ Tokyo) Optimization



Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ Logistic loss function

f(x) = log(1 + exp(—x)) f*(—y) =ylog(y)+(1—y)log(1 —y)
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f(x) = Ix|

Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))
@ L1 regularizer

Ryota Tomioka (Univ Tokyo)
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Example of conjugate duality (y) = sup,cz. ((x,y) — f(x))

@ L1 regularizer

fix) = I = {—l—oo (otherwise)

f(x) N /!
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Bi-conjugate ** may be different from f

For nonconvex f,
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Lagrangian relaxation
Our optimization problem:

For example
minimize  f(Aw) + g(w) f(z) = 3llz - y|3
© (squared loss)
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Lagrangian relaxation
Our optimization problem:

For example
. . . _ 1 2
minimize  f(Aw) + g(w) f(z) = 3llz—yll2
(squared loss)
Equivalently written as

[ninimize, f(z) + g(w),
st. z=Aw  (equality constraint)
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Lagrangian relaxation

Our optimization problem:

For example
minimize f(Aw) + g(w) f(z)=%lIlz-yl|3

(squared loss)
Equivalently written as

minimiz f(z w
[ninimize, (2) + g(w),

st. z=Aw (equality constraint)

Lagrangian relaxation

minimize  £(z, w, ) = f(2) + g(w) + a'(z - Aw)
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Lagrangian relaxation

Our optimization problem:

For example
. . . _ 1 _ 2
minimize  f(Aw) + g(w) f(z) = 3llz—yll2

(squared loss)
Equivalently written as

minimize f(z w
ZER™M wERD (2) + g(w).

st z=Aw (equality constraint)

Lagrangian relaxation

minimize  £(z, w, ) = f(2) + g(w) + o' (z - Aw)

)

@ Aslong as z = Aw, the relaxation is exact.
@ Minimum of £ is no greater than the minimum of the original.
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Weak duality

invll‘lﬁ(z, w,a) < p* (primal optimal)
proof

inf £(z, w,a):inf< inf £(z,w,a), inf L(z, w,a))
z,w z+AwW

z=Aw
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Weak duality

invll‘lﬁ(z, w,a) < p* (primal optimal)
proof

inf £(z, w,a):inf< inf £(z,w,a), inf L(z, w,a)>
z,w z+AwW

z=Aw

= inf (p*, z;rjqi‘wc(z, w, a))
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Weak duality

invll‘lﬁ(z, w,a) < p* (primal optimal)

proof

z=Aw

inf £(z, w,a):inf< inf £(z,w,a), inf L(z, w,a)>
z,w z+AwW

= inf (p*, z;rjqi‘wc(z, w, a))

*

<p
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Dual problem

From the above argument

d(a) ;= inf L(z,w, )

zw

is a lower bound for p* for any a. Why don’t we maximize over w?
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Dual problem
From the above argument
dla) := ;nj/ L(z,w, )
is a lower bound for p* for any a. Why don’t we maximize over w?
Dual problem
mixei]gl"gze d(a)

Note

sup an,L(z, w,a)=d <p‘= injlsup L(z,W, )

If d* = p*, strong duality holds. This is the case if f and g both closed

and convex.
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Dual problem

d(e) = inf L(z.w.0) (<p)
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Dual problem

d(e) = inf L(z.w.0) (<p)

= inf <f(z) +g(w)+a'(z- Aw))
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Dual problem

d(a) = inf L(z,w,a) (< p)
= inf (f(z) +g(w)+a'(z- Aw))

= inf ((2) + (e, 2)) + inf (g(w) - <ATa, w>)
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Dual problem

d(@) = inf L(z.w.a) (< p)
= inf ((2) + g(w) + a7 (z - Aw))
= inf ((2) + (e, 2)) + inf (g(w) - <ATa, w>)
= —sup ((~a.2) ~ 1(2)) — sup (AT w) — g(w))

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26 49/72



Dual problem

d(e) = inf L(z.w.0) (<p)

= inf ((2) + g(w) + a7 (z - Aw))

= inf ((2) + (e, 2)) + inf (g(w) - <ATa, w>)

= —sup ((~a.2) ~ 1(2)) — sup (AT w) — g(w))
= f"(~a) - g'(ATa)
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Fenchel’'s duality

Jnf_(f(Aw) + g(w)) = sup (~F*(—a) = g"(A"a))

acRM

M. W. Fenche

Examples
@ Logistic regression with L1 regularization

f(z) =) log(1 +exp(~z)), g(w)=A|w];.

i=1

@ Support vector machine (SVM)

|
2L
=

f(z) = Ci max(0,1 — z), g(w)= ; 2
i—1
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Example 1: Logistic regression with L1 regularization
Primal Dual

min  f(y o Xw) + ¢x(w) max —f*(~a) — (X (aoy))
f(z) = log(1 + exp(-z)), ()= ajlog(e)
=1 i=1

oA(w) = Allwlf4.

(1 — ai)log(1 — ay),
S(V) = {o (IWlloo < ),

+oo (otherwise).

== Hinge Loss == Hinge Loss
= | ogistic LOSS |

= | ogistic Loss

—

o 1

(a) primal losses (b) dual losses
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Example 2: Support vector machine

Primal

min  (y o Xw) + 6,(w)

f(z) = Ci max(0,1 — zj)

i=1

1
oa(w) = 5w,

Dual

max
o

F(—a) = {2511 —aj (0<a<0),

#5(v) = IV

~f*(~a) — ¢i(X " (aoy))

+o0 (oterwise),

.1
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Dual ascent

Assume for a moment that the dual d(«) is differentiable.

For a given !
o t 5 _
d(al) = ;nvfl (f(z) + g(w) + (o', z — Aw))
and one can show that (Chapter 6, Bertsekas 99)

v d( ) t+1 Awt+1

where
z'"1 = argmin (f(2) + (', 2))
z
w!t! = argmin (g(w) — <ATa’, w>)
w
Ryota Tomioka (Univ Tokyo) Optimization
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Dual ascent (Uzawa’s method)

( Minimize the Lagrangian wrt x and z:
zH1 = argmin, (f(2) + (!, 2)),
wit! = argmin,, (g(w) — (ATa!, w)) .

Update the Lagrangian multiplier a!:
altl = at ¢ (2t — Awtt),

H. Uzawa

primal

@ Pro: Very simple.

@ Con: When f* or g* is
non-differentiable, itisadual ~  _ \_ / /‘ ________
subgradient method (convergence /

more tricky)

NB: f* is differentiable < f is strictly
convex.

dual
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Exercise 2: Matrix completion via dual ascent (caietal. 0s)

L 1 2 1 2
minimize g—A|]z—y\\J+<T!!XI\tr+EHXH ),

Strictly convex Strictly convex

st QX)=2z.
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Exercise 2: Matrix completion via dual ascent (caietal. 0s)

L 1 2 1 2
minimize g—A||Z—y“J+<T”X“tr+2||X|| ),

Strictly convex Strictly convex

st QX)=2z.

4

Lagrangian:

1 1
L(X,z,a) = o]z = y|?+(7lIX]|s, + 51IXI?) + ' (z - 2(X)).
2\ 2

~f(2) ~g(x)

Dual ascent

X" = prox, (27 (a!)) (Singular-Value Thresholding)
zZH =y — Aot
ot = al (1 - (X))
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Augmented Lagrangian and ADMM

Learning objectives
@ Structured sparse estimation
@ Augmented Lagrangian
@ Alternating direction method of multipliers

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26
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Total Variation based image denoising (rudin, osher, Fatemi 92]

o 1 2 8)(Xij
minimize SIIX = Ylz2 + )‘%: H (@M)Hz

Original X Observed Y

Ryota Tomioka (Univ Tokyo) Optimization



In one dimension
@ Fused lasso [Tibshirani et al. 05]
1 n—1
minimize | x - yl3+ A 21: X1 — X
Jj=

——True
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Structured sparsity estimation

@ TV denoising
minimize 21X~ YIE+ A" (5%,
i?j

@ Fused lasso

1
N 2\ N

minimize | - y|3 +>\z1: X1 — X
j:
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Structured sparsity estimation

@ TV denoising
minimize 21X~ YIE+ A" (5%,
i?j

@ Fused lasso
1 n—1
minimize 5| x — y/z + A 21 |Xjs1 = X
j:

Structured sparse estimation problem

minimize  f(x) + ¢\(Ax)
X€ER? ~— ——
data-fit  regularization

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26
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Structured sparse estimation problem

minimize  f(x) + ¢\(Ax)
XxeR" ~—~ ~——
data-fit  regularization

@ Not easy to compute prox operator (because it is non-separable)
= difficult to apply IST-type methods.

@ Dual is not necessarily differentiable
= difficult to apply dual ascent.
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Forming the augmented Lagrangian
Structured sparsity problem
minimize  f(x) + ¢\(Ax)

XeR" ~—~ ——
data-fit  regularization

Equivalently written as

minimize f(x) + ¢x(2) ,
weR" N——
separable!

st. z=Ax (equality constraint)
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Forming the augmented Lagrangian
Structured sparsity problem

minimize  f(x) + ¢\(Ax)
XxeR" ~—~ ~——
data-fit  regularization

Equivalently written as

minimize f(x) + ¢x(2) ,
weR" N——

separable!

st. z=Ax (equality constraint)

Augmented Lagrangian function

L,(x.2,0) = f(xX) + ¢x(2) + @ (2~ Ax) + 7 ||z - Ax|3
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Augmented Lagrangian Method
Augmented Lagrangian function

L(X,2,0) = f(X) + $5(2) + o (2 — Ax) + gHz _ Ax|

Augmented Lagrangian method (Hestenes 69, Powell 69)

Minimize the AL function wrt x and z:

(xt+1, 2t = argmin £, (x,z,at).
XeERN zeRM

Update the Lagrangian multiplier:

@ Pro: The dual is always differentiable due to the penalty term.

@ Con: Cannot minimize over x and z independently

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26

62/72



Alternating Direction Method of Multipliers (ADMM;
Gabay & Mercier 76)

Minimize the AL function £, (x, z!, a!) wrt x:
Minimize the AL function £, (x!*1, z, ') wrt z:

Update the Lagrangian multiplier:

@ Looks ad-hoc but convergence can be shown rigorously.
@ Stability does not rely on the choice of step-size 7.
@ The newly updated x*! enters the computation of zi+1.
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Alternating Direction Method of Multipliers (ADMM;
Gabay & Mercier 76)

Minimize the AL function £, (x, z!, a!) wrt x:

x!*1 = argmin (f(x) —a'TAX+ 1)zt - Ax|]§> .
XCR7 2
Minimize the AL function £, (x!*1, z, ') wrt z:

Update the Lagrangian multiplier:
| ol = af + (2! — Axt).

@ Looks ad-hoc but convergence can be shown rigorously.
@ Stability does not rely on the choice of step-size 7.
@ The newly updated x'*' enters the computation of zi+1.
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Alternating Direction Method of Multipliers (ADMM;
Gabay & Mercier 76)

Minimize the AL function £, (x, z!, a!) wrt x:

x!*1 = argmin (f(x) —a'TAX+ 1)zt - Ax|]§> .
XCRN 2

Minimize the AL function £, (x!*1, z, ') wrt z:

z+1 = argmin (@(z) talTz+ 2|z — Axt*! HS) .
ZcRM 2

Update the Lagrangian multiplier:

ol = ol £z — Axtt),

@ Looks ad-hoc but convergence can be shown rigorously.
@ Stability does not rely on the choice of step-size 7.
@ The newly updated x'*' enters the computation of zi+1.
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Exercise: implement an ADMM for fused lasso

Fused lasso

N 1
minimize §||x—y||§+>\||Ax|]1

@ What is the loss function f?

@ What is the regularizer g?

@ What is the matrix A for fused lasso?

@ What is the prox operator for the regularizer g?

Ryota Tomioka (Univ Tokyo) Optimization 2011-08-26
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Conclusion

@ Three approaches for various sparse estimation problems
» lterative shrinkage/thresholding — proximity operator
» Uzawa’s method — convex conjugate function
» ADMM — combination of the above two
@ Above methods go beyond black-box models (e.g., gradient
descent or Newton’s method) — takes better care of the problem
structures.

@ These methods are simple enough to be implemented rapidly, but
should not be considered as a silver bullet.
= Trade-off between:

» Quick implementation — test new ideas rapidly
» Efficient optimization — more inspection/try-and-error/cross
validation
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Topics we did not cover

@ Stopping criterion
» Care must be taken when making a comparison.
@ Beyond polynomial convergence O(1/k?)

» Dual Augmented Lagrangian (DAL) converges super-linearly
o(exp(—Kk)). Software
http://mloss.org/software/view/183/

(This is limited to non-structured sparse estimation.)
@ Beyond convexity

» Dual problem is always convex. It provides a lower-bound of the
original problem. If p* = d*, you are done!

» Dual ascent (or dual decomposition) for sequence labeling in
natural language processing; see [Wainwright, Jaakkola, Willsky
05; Koo et al. 10]

» Difference of convex (DC) programming.

» Eigenvalue problem.

@ Stochastic optimization
» Good tutorial by Nathan Srebro (ICML2010)
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A new book “Optimization for Machine Learning” is coming out from
the MIT press.

Optimization for Machine Learning (Neural
Information Processing Series) (Hardcover]

,,,,, )

Contributed authors including: A. Nemirovksi, D. Bertsekas, L.
Vandenberghe, and more.
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Possible projects

@ Compare the three approaches, namely IST, dual ascent, and
ADMM, and discuss empirically (and theoretically) their pros and
cons.

© Apply one of the methods discussed in the lecture to model some
real problem with (structured) sparsity or low-rank matrix.
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