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About this class

* Bad news: This class will be in English.

* Good news: The topic “ridge regression” is
probably already familiar to you.

* Even better news: if you ask a question in
English during the class, then you don’t need
to hand in any assignment (no report) for this
class.

# Of course you can still ask questions in Japanese but
yvou have to hand in your assignment as usual.



Why English?

* Number of speakers?  No!
— Chinese (mandarin) 845 million
— Spanish 329 million
— English 328 million

* Let’'s compare “Gamma distribution” in Wikipedia



English for non-native speakers

It is the number of readers.
Japanese/Spanish/Chinese Wikipedia
— Read mostly by native speakers
English Wikipedia

— Read by many non-native speakers

English is the best language to express your
ideas, inventions, research.

Nobody speaks (or writes) perfect English
— The world is full of bad English (but who cares)



Outline

* Ridge Regression (regularized linear regression)
— Formulation

— Handling Nonlinearity using basis functions
— Classification
— Multi-class classification

e Singularity — the dark side of RR

— Why does it happen?
— How can we avoid it?

* Summary



Problem Setting

* Training examples: (x, y)) (i=1,..., n), X, €ERP
Vi Yo Yn

L e b ey

e Goal
— Learn a linear function

P
f(x*) = w'x* (wERP) '
that predicts the output y* for a test point
(x*,y*) ~P(XY)

* Note that the test point is not included in the
traning examples (We want generalization!)




Ridge Regression

e Solve the minimization

minimize ||y — Xw]
w \

oroblem

2 4 Al

|
Training error
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92 matrix T2
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(\: regularization const.)

T
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Note: Can be interpreted as a Maximum A Posteriori (MAP) estimation
— Gaussian likelihood with Gaussian prior.



Designing the design matrix

* Columns of X can be different sources of info
— e.g., predicting the price of an apartment
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e Columns of X can also be derived

— e.g., polynomial regression
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Solving ridge regression

* Take the gradient, and solve
X' (y— Xw)+ I w =0
which gives
w=(X"X+A,) X'y
(/,: pxp identity matrix)
The solution can also be written as (exercise)
w=XT (XXT+AI,) y



Example: polynomial fitting

* Degree (p-1) polynomial model

Yy = wla;p_l + -+ Wp—1ZT + Wy + noise

w1
:(.CEp_l SRR ¥ 1) : + noise
Wp—1
Wp
Design matrix:
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/a:']f kA 1\
b T2 o 1
2 2 T2
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= = =True
Learned
X  Training examples

A =0.001

Example: 5th-order polynomial fitting
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Example: RBF fitting

* Gaussian radial basis function (Gaussian-RBF)
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RR-RBF (A=10°8)

=1e-08
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RR-RBF (A=10"7)

=1e-07
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RR-RBF (A=10°)

lambda=1e-06
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RR-RBF (A=105)

lambda=1e-05
3 T T T T T I I
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RR-RBF (A=10)

=0.0001

lambda
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RR-RBF (A=1073)

lambda=0.001
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RR-RBF (A=102)

lambda=0.01
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RR-RBF (A=101)

=0.1
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RR-RBF (A=1)

1

lambda

AR

T 7 ] T
3 Vel \
@) 1 \\ :____ —_X
me [BY; \\:_ i
o £E WA / \__
230 Ford :
e N /\/\:_ I
! IAWRANEE| 1
: X Fho) g
I YAYRYR]
A AP
IRYRYAN
AN
VYA
N

1.5

0.5

-0.5



RR-RBF (A=10)
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Binary classification

* Targetyis+1 or-1.
Outputs 1

_1 e
to bdg Ly — 1 : > Orange (+1)
predicted Y : - or lemon (-1)

—

1
 Just apply ridge regression with +1/-1 targets
(forget about the Gaussian noise assumption!)

* We again use Gaussian RBF:

1
o) = o (3 o el )
Vector



Classification: Truth




Classification with RR, A=0.1




Classification with RR, A=1




Classification with RR, A=10
Learned (A=10)
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Classification with RR, A=100

Learned (A=

100)

U T




Multi-class classification

USPS digits dataset 7291 training samples,
2007 test samples
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/datasets/zip.info
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USPS dataset

We can obtain 88% accuracy on a held-out test-set
using about 7000 training examples

100
machine learners
90 care.
__ 80
&
>
S 700
3
< ol / A machine can learn!
(using a very simple
o,/ 4+ learning algorithm)
_ _6 ] ] ] ]
\=10%
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Summary (so far)

Ridge regression (RR) is very simple.

RR can be coded in one line:
W=(X'*X+lambda*eye(n))\(X'*Y);
RR can prevent over-fitting by regularization.

Classification problem can also be solved by
properly defining the output Y.

Nonlinearities can be handled by using basis
functions (polynomial, Gaussian RBF, etc.).



Singularity
- The dark side of RR



USPS dataset (p=256)
(What | have been hiding)

* The more data the less accurate??
0= ' ' ' ' ' ' '

~
o

| 256 is the number
~ of pixels (16x16)
~inthe image
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Accuracy (%)

A=10°

Breast Cancer Wisconsin
(diagnostic) dataset (p=30)
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30 real-valued features
* radius

* texture

* perimeter

e area, etc.



SPECT Heart dataset (p=22)

SPECT Heart p=22

1 22 binary features
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Number of samples (n)



4 - e P A

Spambase dataset (p=57) ===

Spambase p=57
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55 real-valued features
* word frequency

e character frequency
2 integer-valued feats
* run-length



Accuracy (%)

Musk dataset (p=166)

musk p=166
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Number of samples (n)

166 real-valued features



Singularity

Why does it happen?
How can we avoid it?



Why does it happen?
Let’s analyze the simplest case: regression.

* Model
— Design matrix X is fixed (X is not a random var.).
— Output 5
y=Xw' +¢ £~N(0,071)
_ Gaussian noise
* Estimator 4
w=(X"X+X,) X'y

* Generalization Error ":QH@ —awt HQ

AN N

Expectation wrt ¢ Estimated Truth



Analysis Strategy

(1) Bias-variance decomposition
Eellw —w”||* = Eellw — wl|® + [l — w*|?

Variance Bias (squared)
where w is the mean estimator w = Egﬁ)

(2) Analyze the variance
Eellw —w|* =7
(3) Analyze the bias

|w — w*||* =7



Analyze the variance (sketch)

1. Show that

Variance
Ee||w —w|]* =?Tr (X' X + M) *X ' X)

2. Let 5,>0,...,5,,>0 be the positive singular values
of X (m=min(n,p)). Show that

m

>\—>O _
Eellw — wHQ—UZZ C +>\ 22522

Variance can be large if the min. singular-value is close to zero!




Analyze the bias (sketch)
1. Show that

| —w*||* = M(X ' X + AL,) " w||?
2. Show that .

|l — w*||* = o)
B s2 + A

1=1

where  s,=0 (if i>m),
v; is the ith right singular vector of X

‘ 2
2 A—0 f:n+1 (”iTw*) (n <p),

|w — w*||” — < .
0 (otherwise).

\



Generalization error llw—w"1?
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Result (A=10°)

Ridge Regression: number of variables=100, lambda=1e-06
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Result (A=0.001)

Ridge Regression: number of variables=100, lambda=0.001

120 . . ! !
| | | simulation
- = =Dbias
100+ | = = =variance |
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Generalization error llw—w"[1?

120

100

(0]
o

(®))
o

I
o

20

Result (A=1)

Ridge Regression: number of variables=100, lambda=1

simulation
- = =hjas
| = = =variance

100 150
Number of samples

200

250



How about classification?

e Model

— Input vector x; is sampled from standard Gaussian
distribution (x; is a random variable):

ZEZNN(O,Ip) (ZZl,,Tl)

— The true classifier is also a normal random variable:

w* ~ N(0,1,)
— QOutput
y = sign(Xw™) Truth
b3
(Not a Gaussian noisel) w
* Generalization Error
1 ( w' w* > i
€ = — arccos ~ - w
0 |w]|[|w=|| Estimated




Analyzing classification

* Let a =n/p and assume that

Number of Number of Regularization
samples features constant
n — 00, p — 00, A— 0

* Analyze the inner product

Ew'w* = \[\/;

* Analyze the norm

(a(l—2a) (
X —= a < 1),
Elwl =19 2@ -2 (a > 1)

\ a—1




Analyzing classification (result)

Ridge Regression: number of variables=100, lambda=1e-06
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How can we avoid the singularity?

v’ Regularization

v Logistic regression

log (y = +1|x) . fos G
-5 0 )
> ~ A
minimize E log(1 + exp(—y;w ' x;)) + = ||w]|?
v i=1 2
| ] | J
i
Training error Regularization term

(A: regularization const.)
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How can we avoid singularity?
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Summary

Ridge regression (RR) is very simple and easy to
implement.

RR has wide application, e.g., classification, multi-
class classification

Be careful about the singularity. Adding data does
not always help improve performance.

Analyzing the singularity: predicts the simulated
performance quantitatively.

— Regression setting: variance goes to inifity at n=p.

— Classification setting: norm ||||* goes to inifinity at n=p.



Further readings

* Elements of Statistical Learning (Hastie,
Tibshirani, Friedman) 2009 (2"¢ edition)
— Ridge regression (Sec. 3.4)
— Bias & variance (Sec. 7.3)
— Cross validation (Sec. 7.10)

 Statistical Mechanics of Generalization (Opper
and Kinzel) in Models of neural networks lll:

Association, generalization, and representation,
1995.

— Analysis of perceptron
— Singularity



