Ridge Regression

Ryota Tomioka

Department of Mathematical Informatics

The University of Tokyo

About this class

- Bad news: This class will be in English.
- Good news: The topic "ridge regression" is probably already familiar to you.

 Even better news: if you ask a question in English during the class, then you don't need to hand in any assignment (no report) for this class.

Of course you can still ask questions in Japanese but you have to hand in your assignment as usual.

Why English?

- Number of speakers? No!
 - Chinese (mandarin) 845 million
 - Spanish 329 million
 - English 328 million
 - **—** ...
- Let's compare "Gamma distribution" in Wikipedia

English for non-native speakers

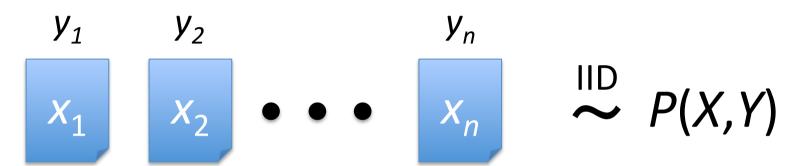
- It is the number of readers.
- Japanese/Spanish/Chinese Wikipedia
 - Read mostly by native speakers
- English Wikipedia
 - Read by many non-native speakers
- English is the best language to express your ideas, inventions, research.
- Nobody speaks (or writes) perfect English
 - The world is full of bad English (but who cares)

Outline

- Ridge Regression (regularized linear regression)
 - Formulation
 - Handling Nonlinearity using basis functions
 - Classification
 - Multi-class classification
- Singularity the dark side of RR
 - Why does it happen?
 - How can we avoid it?
- Summary

Problem Setting

• Training examples: (x_i, y_i) $(i=1,..., n), x_i \in \mathbb{R}^p$



- Goal
 - Learn a linear function

$$f(x^*) = w^T x^* \quad (w \in \mathbb{R}^p)$$
that predicts the output y^* for a test point $(x^*, y^*) \sim P(X, Y)$

 Note that the test point is not included in the traning examples (We want generalization!)

Ridge Regression

Solve the minimization problem

minimize
$$\|y-Xw\|^2 + \lambda \|w\|^2$$

Training error Regularization (ridge) term (λ : regularization const.)

Target output
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 Design matrix $X = \begin{pmatrix} x_1^\top \\ x_2^\top \\ \vdots \\ x_n^\top \end{pmatrix}$

Note: Can be interpreted as a Maximum A Posteriori (MAP) estimation – Gaussian likelihood with Gaussian prior.

Designing the design matrix

- Columns of X can be different sources of info
 - e.g., predicting the price of an apartment

- Columns of X can also be derived
 - e.g., polynomial regression

$$X = \begin{pmatrix} x_1^{p-1} & \cdots & x_1^2 & x_1 & 1 \\ x_2^{p-1} & \cdots & x_2^2 & x_2 & 1 \\ \vdots & & & & \vdots \\ x_n^{p-1} & \cdots & x_n^2 & x_n & 1 \end{pmatrix}$$

Solving ridge regression

Take the gradient, and solve

$$-\boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) + \lambda \boldsymbol{w} = 0$$

which gives

$$m{w} = ig(m{X}^{ op}m{X} + \lambda m{I}_pig)^{-1}m{X}^{ op}m{y}$$
 ($m{I}_p$: p×p identity matrix)

The solution can also be written as (exercise)

$$oldsymbol{w} = oldsymbol{X}^ op oldsymbol{\left(XX^ op + \lambda oldsymbol{I}_n
ight)}^{-1} oldsymbol{y}$$

Example: polynomial fitting

Degree (p-1) polynomial model

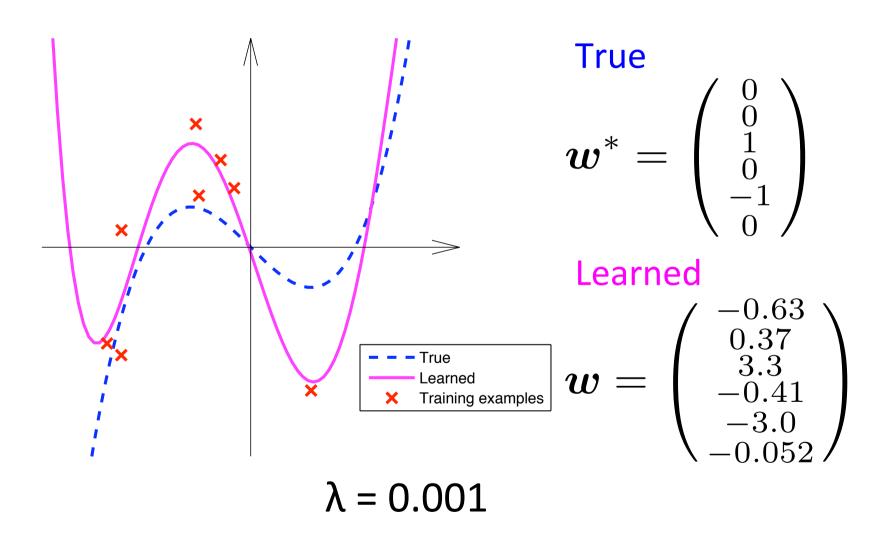
$$y = w_1 x^{p-1} + \dots + w_{p-1} x + w_p + \text{noise}$$

$$= (x^{p-1} \dots x \quad 1) \begin{pmatrix} w_1 \\ \vdots \\ w_{p-1} \end{pmatrix} + \text{noise}$$

Design matrix:

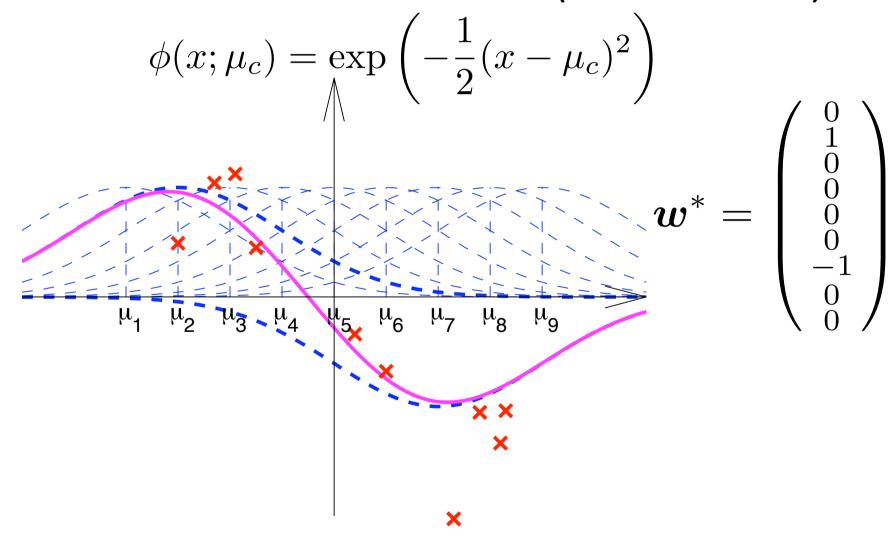
$$\boldsymbol{X} = \begin{pmatrix} x_1^{p-1} & \cdots & x_1^2 & x_1 & 1 \\ x_2^{p-1} & \cdots & x_2^2 & x_2 & 1 \\ \vdots & & & \vdots \\ x_n^{p-1} & \cdots & x_n^2 & x_n & 1 \end{pmatrix}$$

Example: 5th-order polynomial fitting

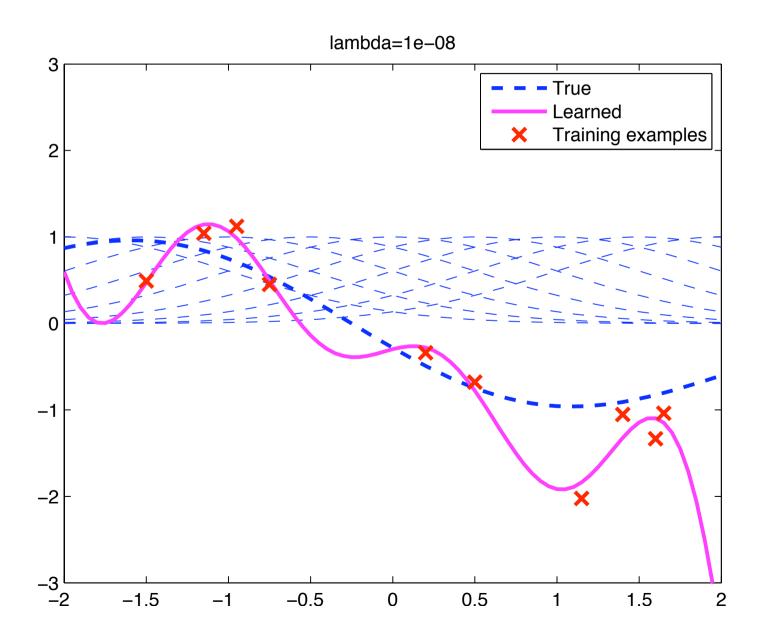


Example: RBF fitting

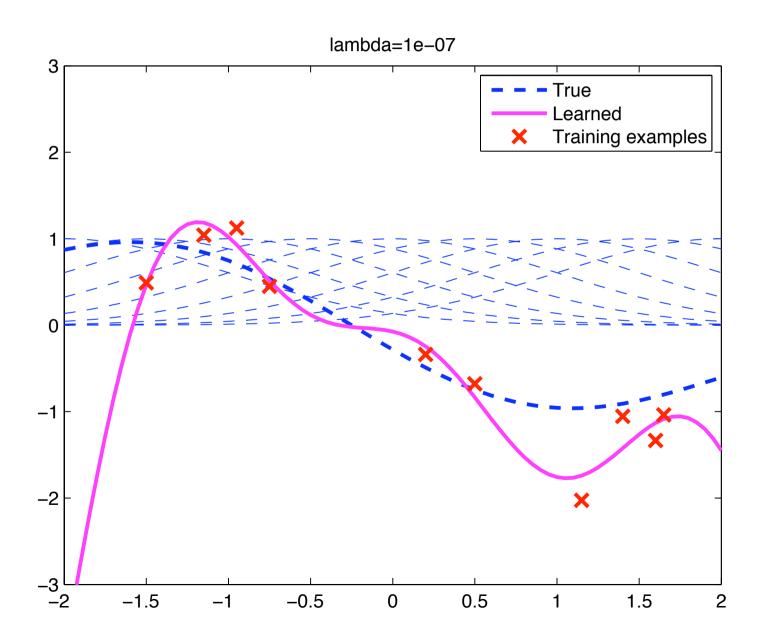
Gaussian radial basis function (Gaussian-RBF)



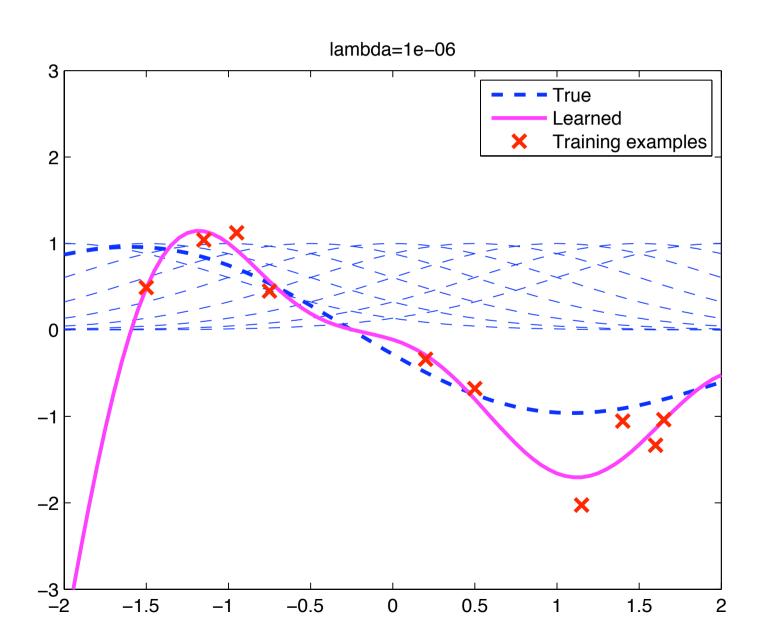
RR-RBF (λ =10⁻⁸)



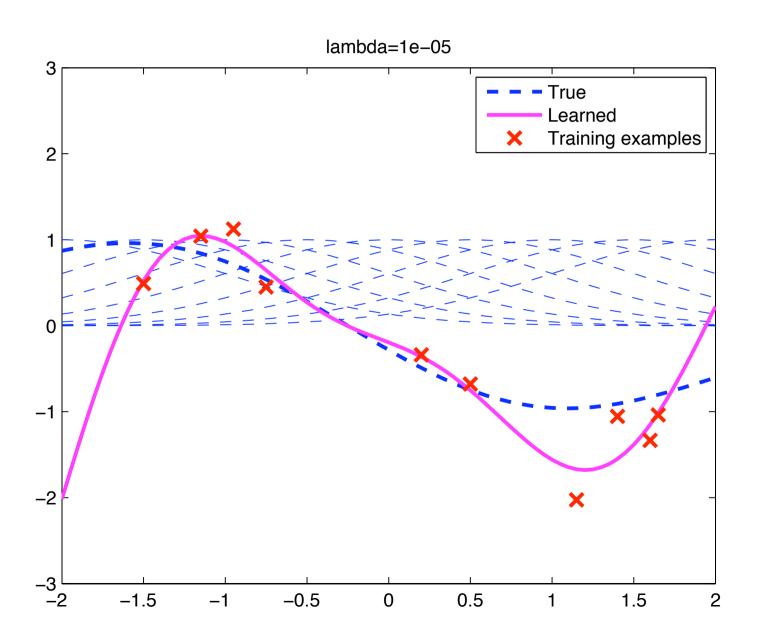
RR-RBF (λ =10⁻⁷)



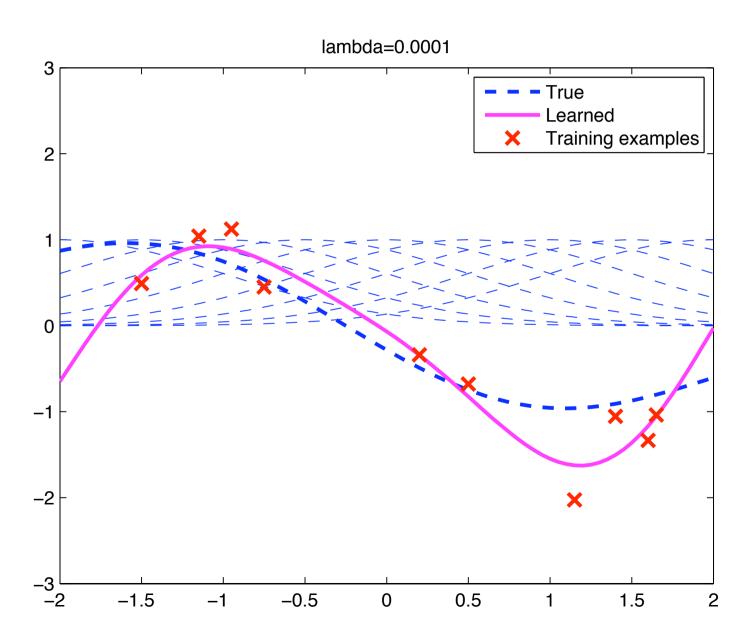
RR-RBF (λ =10⁻⁶)



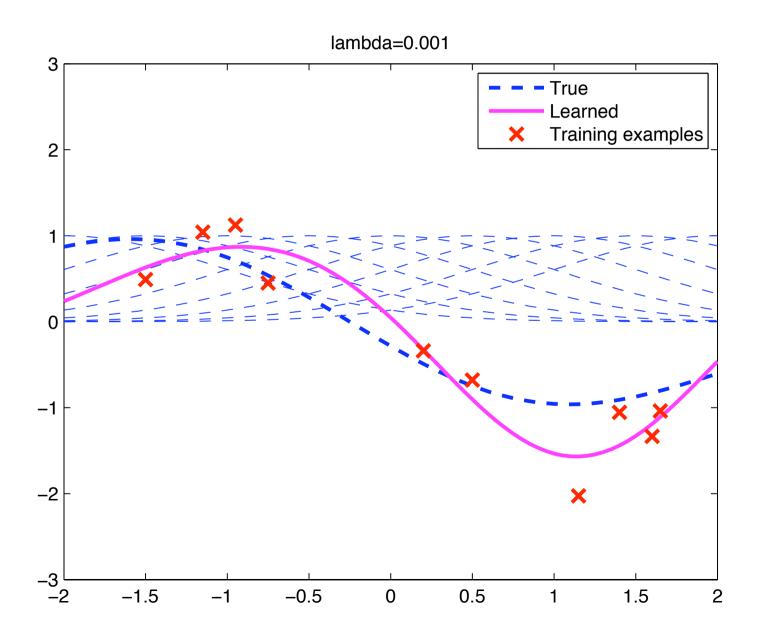
RR-RBF (λ =10⁻⁵)



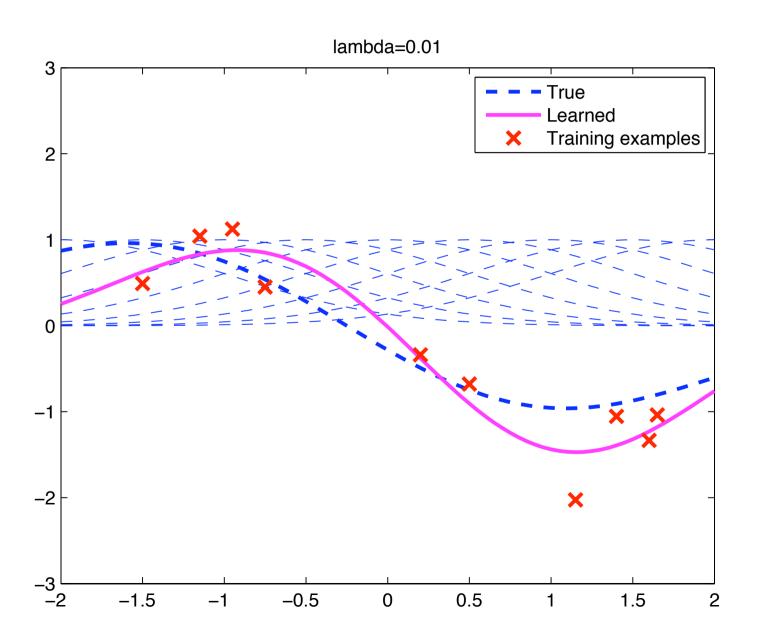
RR-RBF (λ =10⁻⁴)



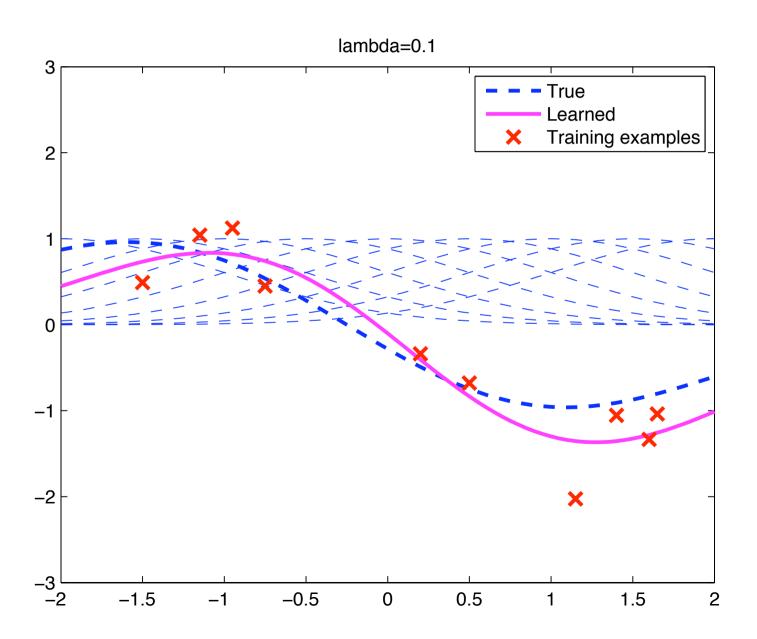
RR-RBF (λ =10⁻³)



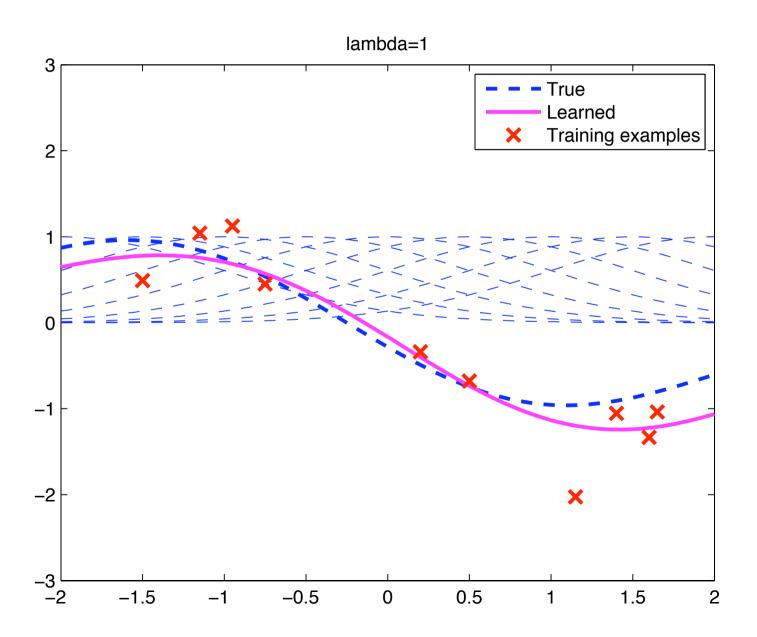
RR-RBF (λ =10⁻²)



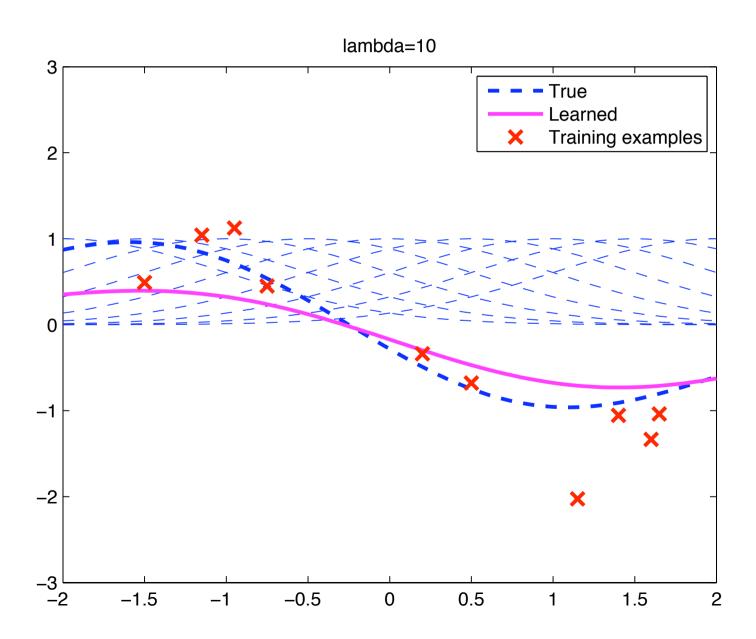
RR-RBF (λ =10⁻¹)



RR-RBF (λ =1)



RR-RBF (λ =10)



Binary classification

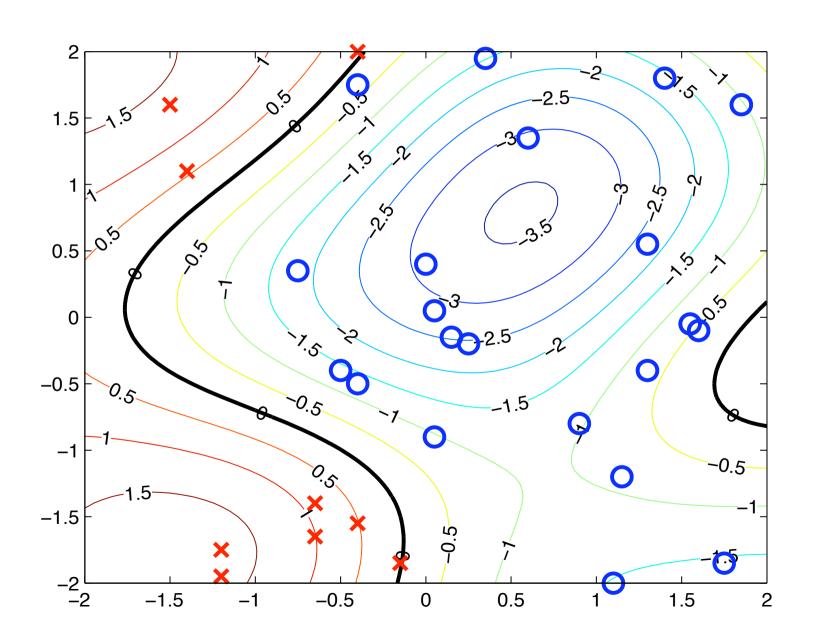
• Target y is +1 or -1.

Outputs to be predicted
$$y=\begin{pmatrix} 1\\-1\\1\\\vdots\\1\end{pmatrix}$$
 Orange (+1) or lemon (-1)

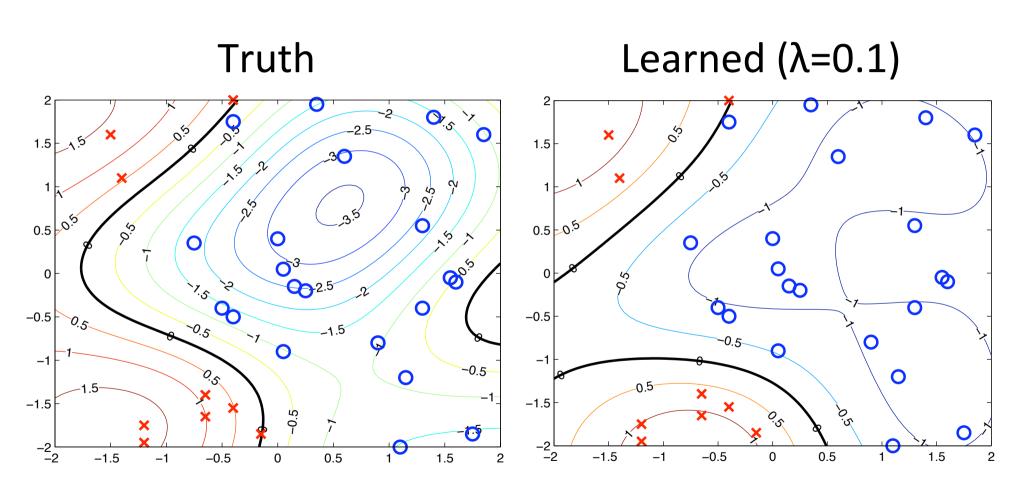
- Just apply ridge regression with +1/-1 targets (forget about the Gaussian noise assumption!)
- We again use Gaussian RBF:

$$\phi(x; \mu_c) = \exp\left(-\frac{1}{2} \|\boldsymbol{x} - \boldsymbol{\mu}_c\|^2\right)$$
Vector

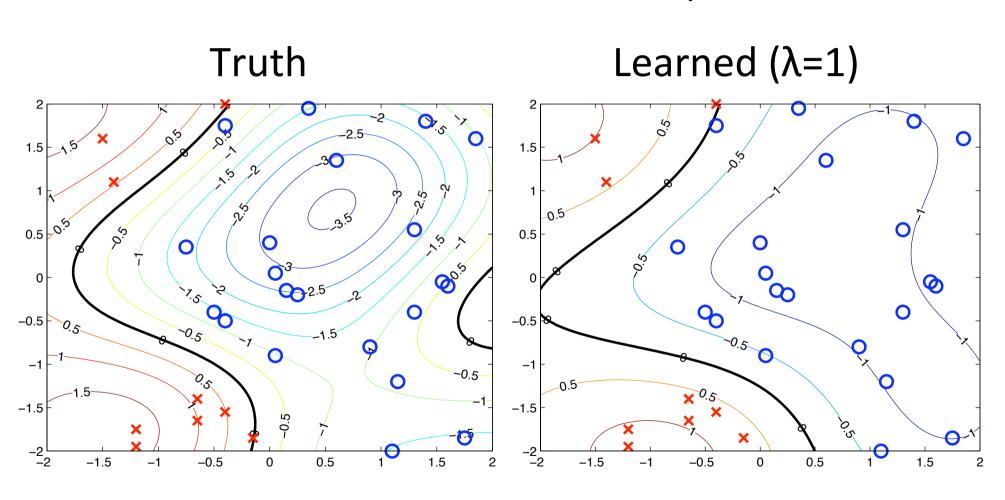
Classification: Truth



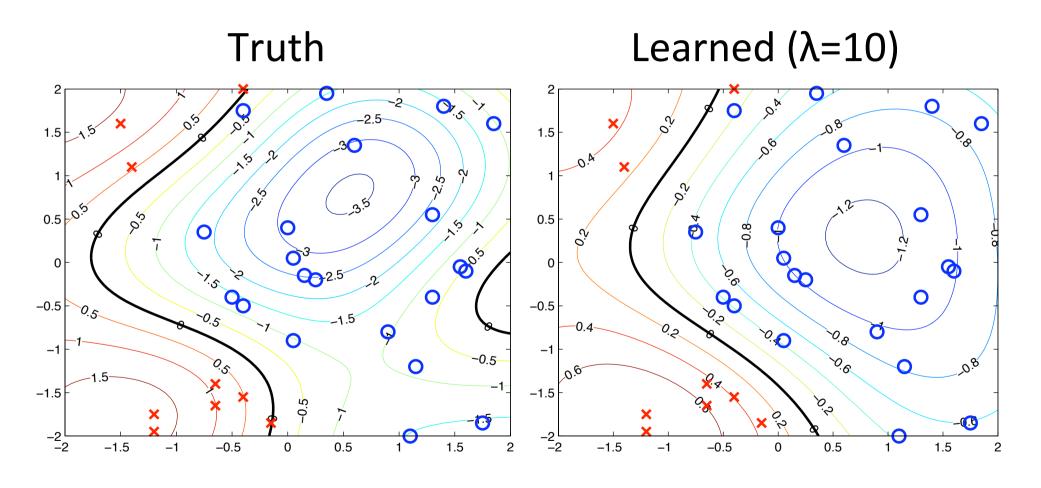
Classification with RR, λ =0.1



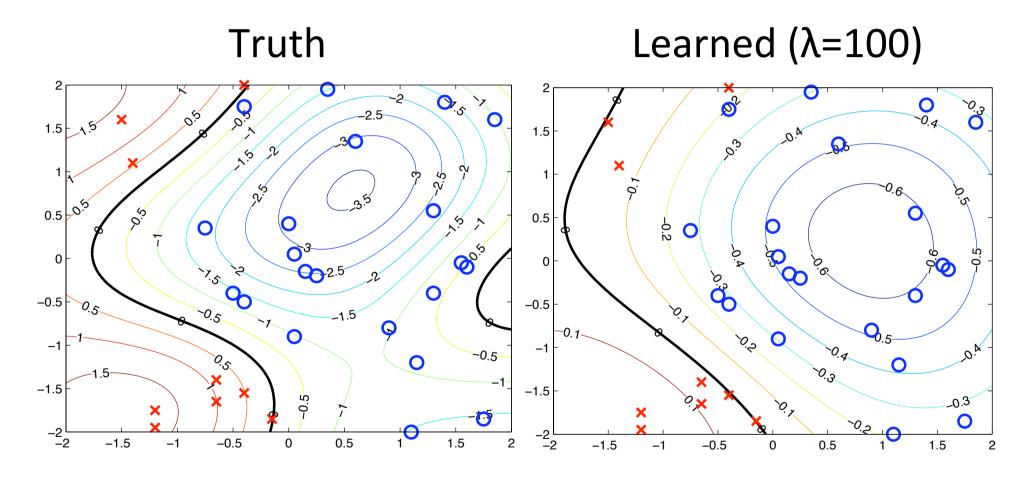
Classification with RR, $\lambda=1$



Classification with RR, λ =10



Classification with RR, λ =100

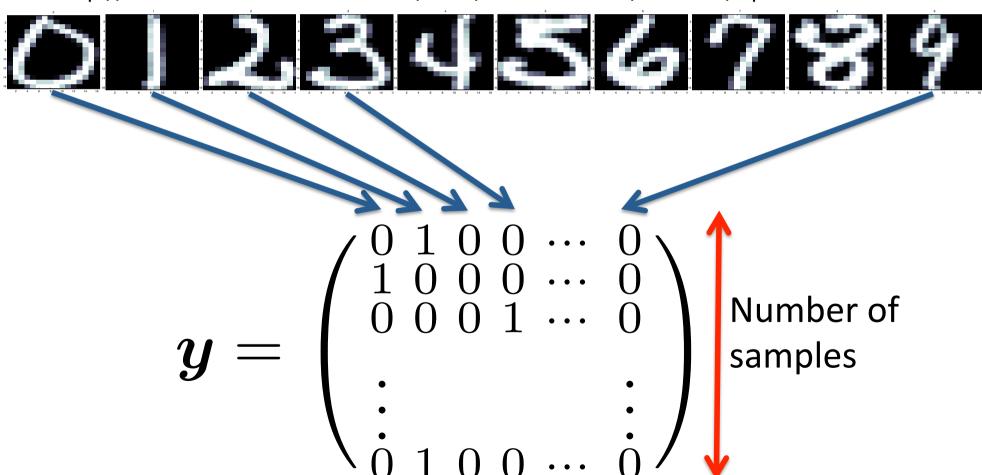


Multi-class classification

USPS digits dataset

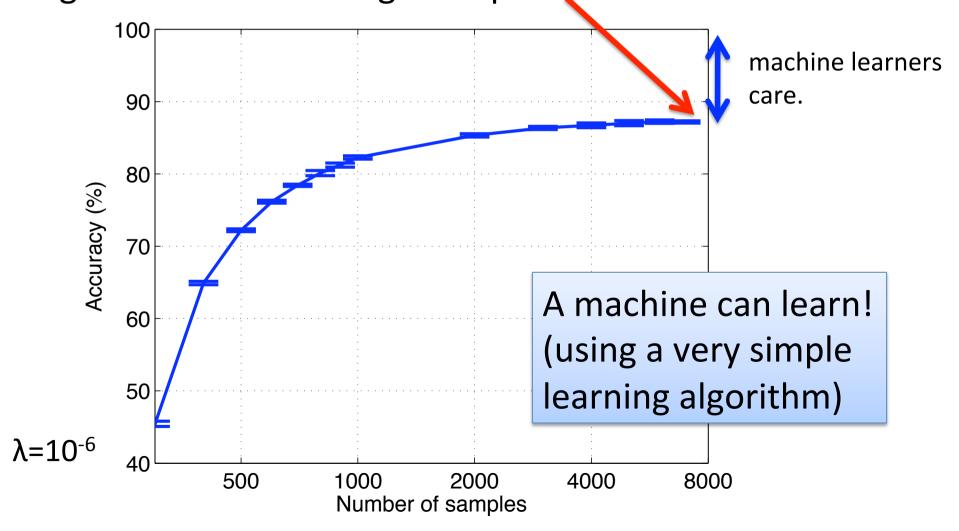
7291 training samples, 2007 test samples

http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/datasets/zip.info



USPS dataset

We can obtain 88% accuracy on a held-out test-set using about 7000 training examples



Summary (so far)

- Ridge regression (RR) is very simple.
- RR can be coded in one line:

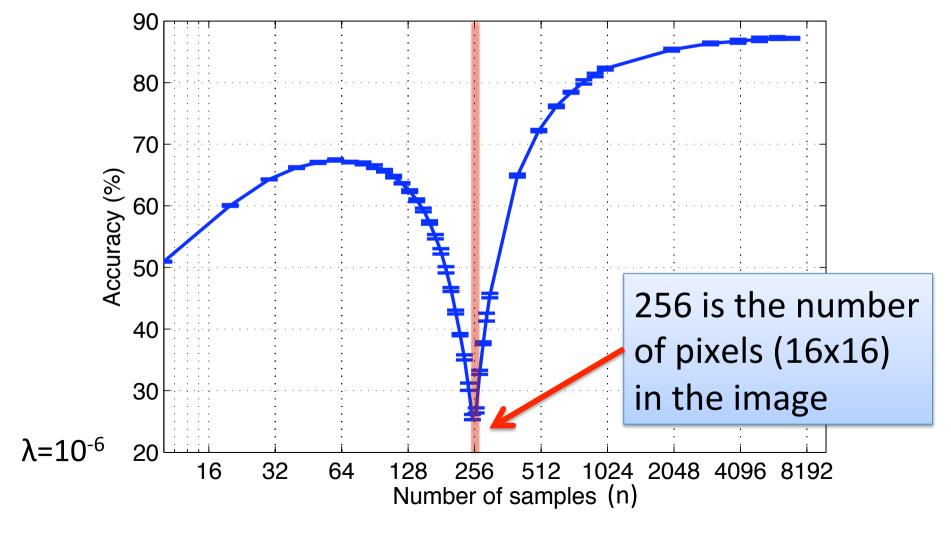
```
W=(X'*X+lambda*eye(n))(X'*Y);
```

- RR can prevent over-fitting by regularization.
- Classification problem can also be solved by properly defining the output Y.
- Nonlinearities can be handled by using basis functions (polynomial, Gaussian RBF, etc.).

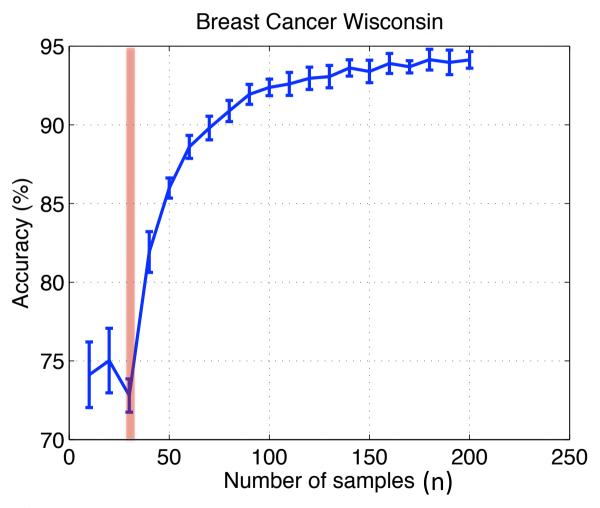
Singularity - The dark side of RR

USPS dataset (p=256) (What I have been hiding)

The more data the less accurate??



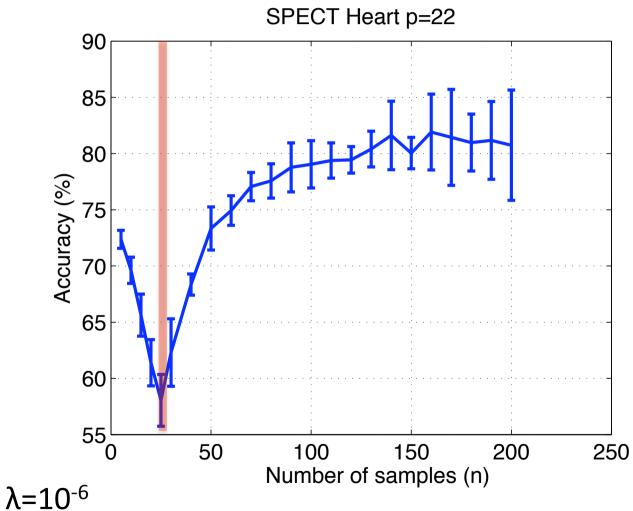
Breast Cancer Wisconsin (diagnostic) dataset (p=30)



30 real-valued features

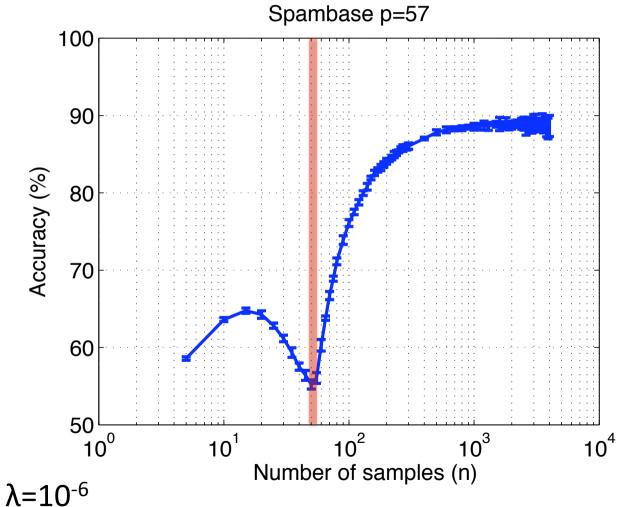
- radius
- texture
- perimeter
- area, etc.

SPECT Heart dataset (p=22)



22 binary features

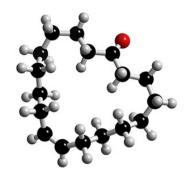
Spambase dataset (p=57)

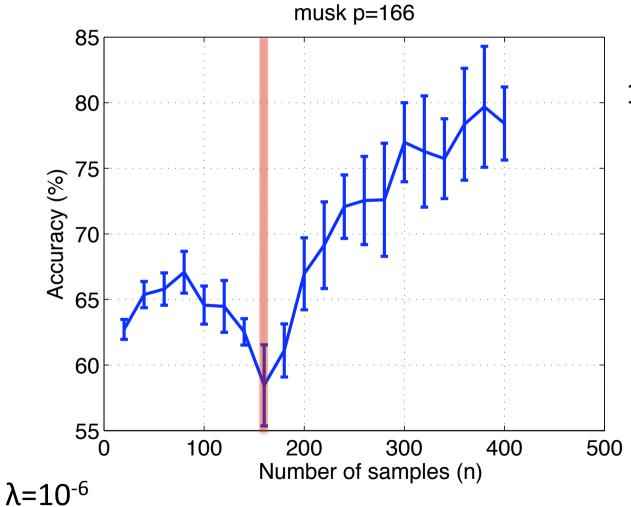


55 real-valued features

- word frequency
- character frequency
- 2 integer-valued feats
- run-length

Musk dataset (p=166)





166 real-valued features

Singularity

Why does it happen?

How can we avoid it?

Why does it happen? Let's analyze the simplest case: regression.

- Model
 - Design matrix X is fixed (X is not a random var.).
 - Output

$$m{y} = m{X} m{w}^* + m{\xi}, \quad m{\xi} \sim \underline{\mathcal{N}(0, \sigma^2 m{I}_n)}$$
 Gaussian noise

Estimator

$$\hat{oldsymbol{w}} = \left(oldsymbol{X}^ op oldsymbol{X} + \lambda oldsymbol{I}_p
ight)^{-1} oldsymbol{X}^ op oldsymbol{y}$$

Generalization Error

$$\mathbb{E}_{oldsymbol{\xi}} \|\hat{oldsymbol{w}} - oldsymbol{w}^*\|^2$$

Expectation wrt ξ Estimated

Analysis Strategy

(1) Bias-variance decomposition

$$\mathbb{E}_{oldsymbol{\xi}} \|\hat{oldsymbol{w}} - oldsymbol{w}^*\|^2 = \mathbb{E}_{oldsymbol{\xi}} \|\hat{oldsymbol{w}} - ar{oldsymbol{w}}\|^2 + \|ar{oldsymbol{w}} - oldsymbol{w}^*\|^2$$
 Variance Bias (squared)

where $ar{m{w}}$ is the mean estimator $ar{m{w}} = \mathbb{E}_{m{\xi}} \hat{m{w}}$

(2) Analyze the variance

$$\mathbb{E}_{\boldsymbol{\xi}} \|\hat{\boldsymbol{w}} - \bar{\boldsymbol{w}}\|^2 = ?$$

(3) Analyze the bias

$$\|\bar{\boldsymbol{w}} - \boldsymbol{w}^*\|^2 = ?$$

Analyze the variance (sketch)

1. Show that

Variance

$$\mathbb{E}_{\boldsymbol{\xi}} \|\hat{\boldsymbol{w}} - \bar{\boldsymbol{w}}\|^2 = \sigma^2 \text{Tr} \left((\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-2} \boldsymbol{X}^\top \boldsymbol{X} \right)$$

2. Let $s_1>0,...,s_m>0$ be the positive singular values of X ($m=\min(n,p)$). Show that

$$\mathbb{E}_{\boldsymbol{\xi}} \|\hat{\boldsymbol{w}} - \bar{\boldsymbol{w}}\|^2 = \sigma^2 \sum_{i=1}^m \frac{s_i^2}{(s_i^2 + \lambda)^2} \xrightarrow{\lambda \to 0} \sigma^2 \sum_{i=1}^m s_i^{-2}$$

Variance can be large if the min. singular-value is close to zero!

Analyze the bias (sketch)

1. Show that

$$\|\bar{\boldsymbol{w}} - \boldsymbol{w}^*\|^2 = \lambda^2 \|(\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_p)^{-1} \boldsymbol{w}^*\|^2$$

2. Show that

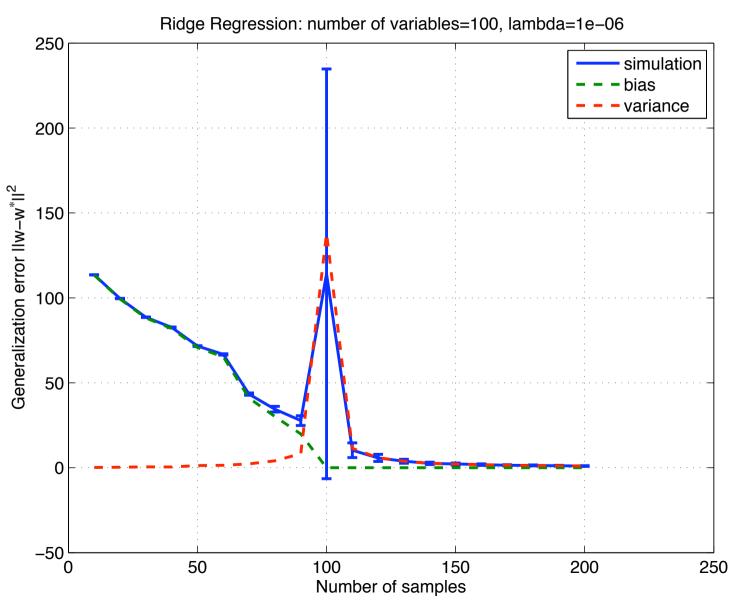
$$\|ar{oldsymbol{w}} - oldsymbol{w}^*\|^2 = \sum_{i=1}^p \left(rac{\lambda {oldsymbol{v}_i}^ op oldsymbol{w}^*}{s_i^2 + \lambda}
ight)^2$$

where $s_i = 0$ (if i > m),

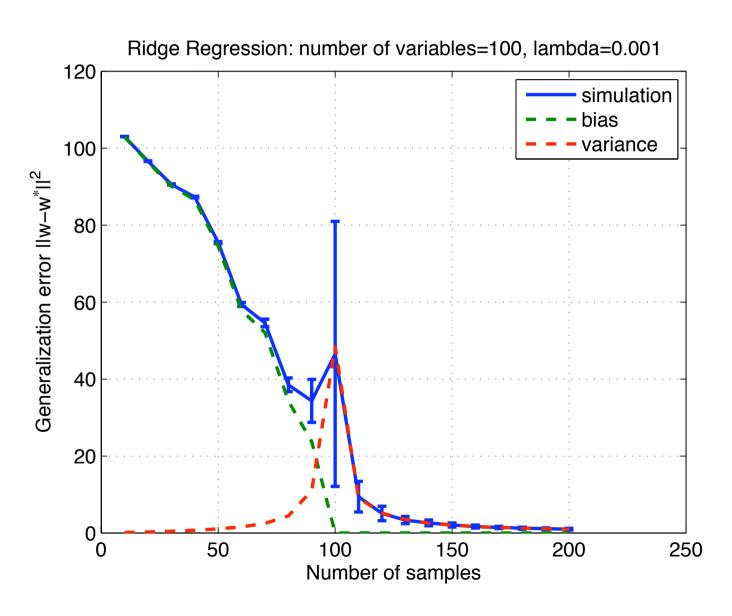
 v_i is the *i*th right singular vector of X

$$\|\bar{\boldsymbol{w}} - \boldsymbol{w}^*\|^2 \xrightarrow{\lambda \to 0} \begin{cases} \sum_{i=n+1}^p \left(\boldsymbol{v}_i^\top \boldsymbol{w}^*\right)^2 & (n < p), \\ 0 & (\text{otherwise}). \end{cases}$$

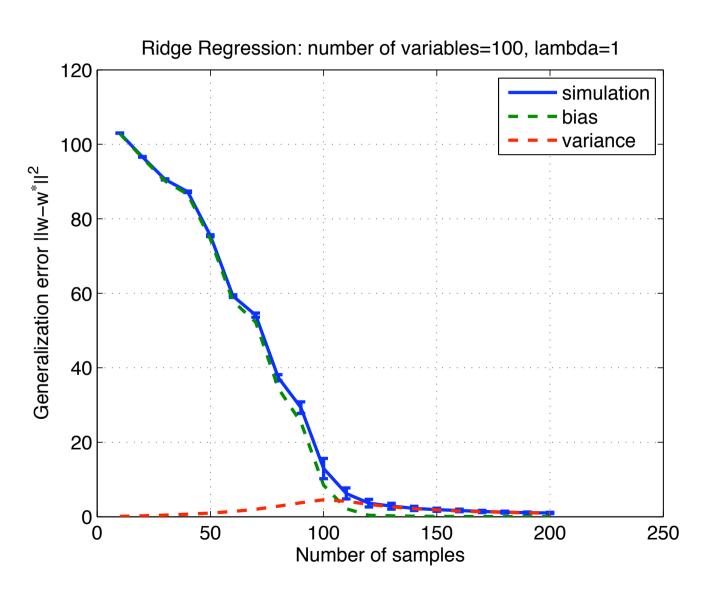
Result ($\lambda = 10^{-6}$)



Result (λ =0.001)



Result (λ =1)



How about classification?

Model

— Input vector x_i is sampled from standard Gaussian distribution (x_i is a random variable):

$$x_i \sim \mathcal{N}(0, \boldsymbol{I}_p) \quad (i = 1, \dots, n)$$

— The true classifier is also a normal random variable:

$$oldsymbol{w}^* \sim \mathcal{N}(0, oldsymbol{I}_p)$$
 $oldsymbol{y} = \mathrm{sign}(oldsymbol{X} oldsymbol{w}^*)$

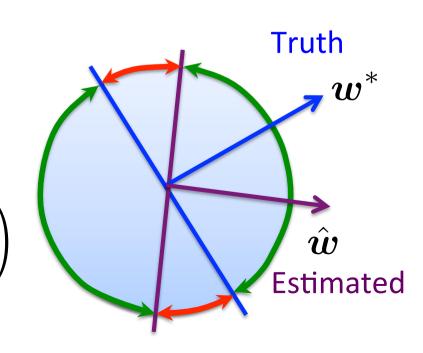
Output

$$oldsymbol{y} = \operatorname{sign}(oldsymbol{X}oldsymbol{w}^*)$$

(Not a Gaussian noise!)

Generalization Error

$$\epsilon = \frac{1}{\pi} \arccos \left(\frac{\hat{\boldsymbol{w}}^{\top} \boldsymbol{w}^{*}}{\|\hat{\boldsymbol{w}}\| \|\boldsymbol{w}^{*}\|} \right)$$



Analyzing classification

• Let $\alpha = n/p$ and assume that

Number of Number of Regularization samples features constant $n \to \infty, \qquad p \to \infty, \qquad \lambda \to 0$

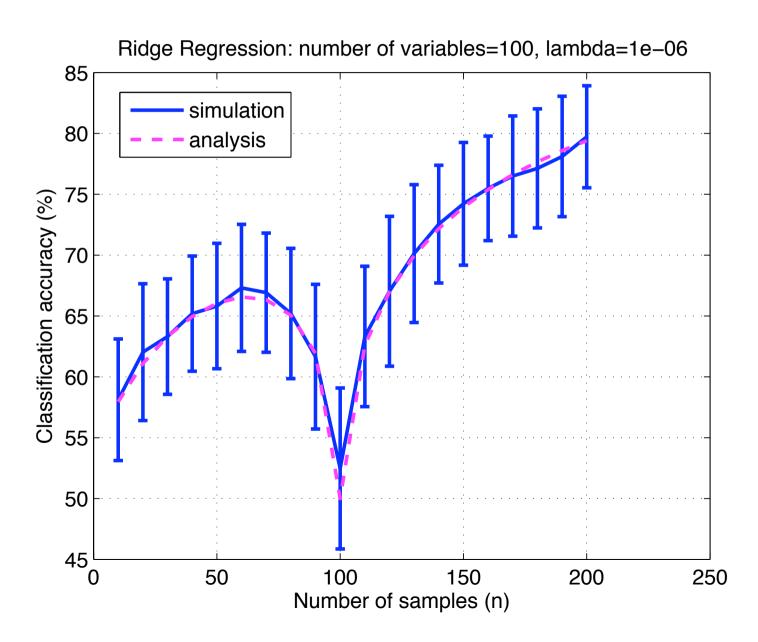
Analyze the inner product

$$\mathbb{E}\hat{\boldsymbol{w}}^{\top}\boldsymbol{w}^{*} = \begin{cases} \sqrt{p}\sqrt{\frac{2}{\pi}}\alpha & (\alpha < 1), \\ \sqrt{p}\sqrt{\frac{2}{\pi}} & (\alpha > 1). \end{cases}$$

Analyze the norm

$$\mathbb{E}\|\hat{\boldsymbol{w}}\|^{2} = \begin{cases} \frac{\alpha(1-\frac{2}{\pi}\alpha)}{1-\alpha} & (\alpha < 1), \\ \frac{\frac{2}{\pi}(\alpha-1)+1-\frac{2}{\pi}}{\alpha-1} & (\alpha > 1). \end{cases} \quad \mathbb{E}\|\boldsymbol{w}^{*}\|^{2} = p.$$

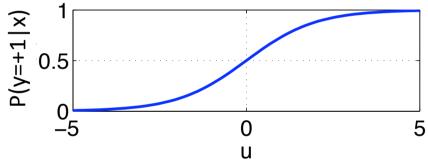
Analyzing classification (result)



How can we avoid the singularity?

- ✓ Regularization
- ✓ Logistic regression

$$\log \frac{P(y=+1|\boldsymbol{x})}{P(y=-1|\boldsymbol{x})} = \boldsymbol{w}^{\top} \boldsymbol{x}$$



$$\sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

Training error

Regularization term (λ: regularization const.)

How can we avoid singularity?



Summary

- Ridge regression (RR) is very simple and easy to implement.
- RR has wide application, e.g., classification, multiclass classification
- Be careful about the singularity. Adding data does not always help improve performance.
- Analyzing the singularity: predicts the simulated performance quantitatively.
 - Regression setting: variance goes to inifity at n=p.
 - Classification setting: norm $\|\hat{m{w}}\|^2$ goes to inifinity at n=p.

Further readings

- Elements of Statistical Learning (Hastie, Tibshirani, Friedman) 2009 (2nd edition)
 - Ridge regression (Sec. 3.4)
 - Bias & variance (Sec. 7.3)
 - Cross validation (Sec. 7.10)
- Statistical Mechanics of Generalization (Opper and Kinzel) in *Models of neural networks III:*Association, generalization, and representation, 1995.
 - Analysis of perceptron
 - Singularity